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Abstract 

 

 

Abstract of dissertation submitted by:  

Thomas Bernhard Ladinig 

For the degree of Doctor of Philosophy and titled: Continual Process Improvement 

Under Causal Ambiguity 

 

Month and year of submission: June 2020 

 

 

This study examines strategic, quantitative, and behavioral factors of continual process 

improvement in a complex, small-volume, batch production system of a premium car 

manufacturer’s business unit. Operations management theories are linked to qualitative 

and behavioral analyses to increase their applicability and usefulness for practitioners in 

a multi-level and inter-disciplinary case study at the business unit. Practical applications 

of theories and scientific methods are hampered by causal ambiguity and bounded 

rationality, which make it difficult for management to fully understand the impact of their 

decisions on the system. A lens model, based on Social Judgment Theory, is applied to 

deal with imperfect decision making by visualizing the results of a discrete event 

simulation and a management judgment analysis. Another study, using concept mapping 

in combination with behavioral quality management, is conducted to map the conceptual 

domain of quality linkages within the business unit.  

The results of both analyses visualize the conceptual domain as well as cause and 

effect relationships of a set of factors within the business unit and the preferences of 

management towards them. This behavioral approach can facilitate decision making 

regarding improvement project selection and can prevent errors in group decision making 

due to issues related to behavioral operations management. The case studies revealed 

substantial differences in the preferences of the management team and lack of alignment 

with the business unit’s competitive priorities. By combining concept mapping, judgment 

analysis, and the results of the simulation, a mutually acceptable action proposal was 

created to select the most efficient and effective improvement activities to enhance quality 

and flexibility - the two competitive priorities of the business unit.  
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1. Introduction 

The need for a more practical focus in operations management (OM) research has been 

pointed out in several papers and many new concepts were explored to emphasize the 

human aspect and practical relevance in OM in the recent past. Samson and Whybark 

(1998) called out for more attention on the “soft issues” in operations management and 

new fields emerged to focus on behavioral operations in management (Gino and Pisano, 

2008; Croson et al., 2013) and in operations research (White, 2016). Furthermore, 

Schmenner and Swink (1998) and Schmenner et al. (2009) pointed out the bias towards 

rigor and theory at the cost of relevance and understanding of real management problems. 

This research aims to ensure the usefulness and applicability of existing OM 

theories for managerial problems by applying specific concepts to strengthen links 

between theory, behavioral operations, and implementation on the process-level and 

below (group and individual). These methods are applied at a business unit (BU) of a 

multi-national automotive OEM during a project to re-design and improve its whole 

production system. They were developed to deal with imperfections of human judgments 

and visualize them to be integrated into a framework for policy- and decision making 

specifically tailored to the needs of the BU. In an OM context, they can be used to make 

better decisions regarding the design and improvement of production systems, especially 

in complex and dynamic areas with a high degree of causal ambiguity, which gives the 

study a high degree of external validity and generalizability as well.  

1.1. Background and Project Description 

The small-volume production BU of the automotive OEM is an internal supplier for 

various exterior body parts of premium sports cars (doors, bonnets, side panels). It has 

grown organically over the past ten years with a drastic increase in variety of products 

and consequently, an increase in complexity. However, the support systems, 

administration, and the production system design did not grow alongside to cope with 

higher complexity and dynamics of the new system. High process variability, a scattered 

material flow and quality issues increased the instability of the system and “firefighting” 

became the daily business of most people of the BU. Therefore, management decided to 

invest in an expansion of the factory building and a full production system re-engineering 

with a completely new material flow, logistics and production processes. The focus of the 

project was to optimize all production processes and connect them into an efficient value 
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stream with increased productivity, faster throughput times and better quality. This meant 

that all support processes (maintenance, quality assurance, manufacturing planning and 

control, etc.), as well as the organizational design had to be improved and adapted as well.  

The project started with an extensive planning phase conducted by an inter-

disciplinary team of experts and operations management researchers to develop the first 

layout and system design for the new factory expansion. Data from the old system was 

gathered to develop new processes that would fit into the new design to create a fully 

integrated production system. A discrete event simulation (DES) analysis was carried out 

to test the new system, processes and logistics concept regarding material flow, 

throughput time, storage capacity, production capacity and process performance. After 

several improvement cycles and re-designs, the system and processes were ready to be 

implemented and tested on the new shop floor. However, due to the limited resources of 

the small-volume BU, the implementation of a multitude of new processes alongside the 

new production system became a serious issue for the project team.  

1.2. Motivation and Objectives 

It was critical to identify the most important processes that should be implemented and 

improved first to reach the goals of the production system based on the underlying 

strategy and competitive priorities of the BU. The main problem was causal ambiguity 

within the production system and cause and effect relationships were difficult to assess 

and understand to properly allocate resources towards the most important processes. The 

goal was to use scientific methods and theories to improve operations on the process level 

of the BU by giving more and better information for decision making regarding process 

improvement activities. Behavioral, strategic, and operative factors are included in the 

analysis to make it more practical and relatable for management to ultimately make 

mutually acceptable decision. 

Behavioral operations and causal ambiguity are highly related because they both 

deal with imperfect decision making due to bounded rationality and unclear cause and 

effect relationships. This study builds on the latest and most significant developments in 

research on causal ambiguity (e.g. King, 2007) and behavioral operations (e.g. Bendoly 

et al., 2010) and expands it into a holistic concept for highly valuable practical application 

of OM research. The methodologies applied in this study can deal with bounded 

rationality and causal ambiguity simultaneously to create visual support for decision 

makers based on their own judgments and the results of the simulation analysis. This level 
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of transparency can facilitate the creation of mutually acceptable action proposals as a 

result of this OM intervention, which increases the relevance of the results and research 

in general (White, 2016). The goal is to create an action proposal for the selection and 

management of continual improvement activities within the new production system based 

on the results of behavioral analyses and OM tools (in this case a DES). 

The thesis is centered around two individual research papers and is structured as 

follows. Chapter two gives an overview about the strategy and competitive priorities of 

the BU and ties it to theory, behavioral OM/OR, and causal ambiguity. The third chapter 

describes the methodologies of the lens model application based on Social Judgment 

Theory (SJT) and concept mapping as used in the two research papers, respectively. The 

results of both analyses are discussed and integrated in chapter four.  
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2. Theoretical Framework and Literature 

To deliver desired results of improvement activities on the process level it is first 

necessary to analyze and develop strategies, theories, and competitive priorities to ensure 

that the scientific methods are suitable for the production system. This chapter gives an 

overview about the identification of competitive priorities in general and for the business 

unit (BU), focused on Theory of Production Competence (Cleveland, et al., 1989). It starts 

with the underlying theories of this study and how they can be used to guide the 

management of a continual improvement process (CIP) to increase firm performance. 

Furthermore, it contains a top-level analysis of strategy and drills down to the quantitative 

and behavioral factors of operations management on the shop floor of an organization. 

The reasoning behind it is the need for a well-developed framework without conflicts 

between different theories to facilitate practical application of this OM intervention at the 

production system of the BU. At the end of the chapter, the role of causal ambiguity is 

discussed when managers make judgments and decisions, and how they can cope with 

uncertainty about cause and effect relationships. 

2.1. Identifying Competitive Priorities and Organizational Capabilities 

To decide what to do and how to do it, a group of managers should focus on three aspects 

when identifying the most critical competitive priorities and processes. First, strategic 

aspects ensure the alignment of manufacturing decisions with the strategy of the firm 

(Skinner, 1969; Anderson et al., 1989; Schmenner and Vastag, 2006). Quantitative 

aspects are critical to analyze and find policies and processes with the highest potentials 

for improvement to increase the performance of the company (Zantek et al., 2002; Li and 

Rajagopalan, 2008). Finally, behavioral aspects must not be overlooked to make sure that 

the whole management team understands and mutually agrees upon decisions, and to 

prevent conflicts between people of different functional and hierarchical areas 

(Hammond, 2007; Hämäläinen et al., 2013). Theoretical concepts and solutions can be 

successfully applied on the micro-level only if all three aspects are aligned in a logic and 

consistent manner and all (or most) conflicts are resolved between and within 

organizational levels. 

2.1.1. Strategic Aspects (Factors are Strategically Relevant) 

To highlight the path from theory to practical application it is necessary that managers 

understand how they can integrate a theory into their strategic decision-making processes. 

One factor is the combination of the product structure and process structure that defines 
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the nature of the production system according to the product-process matrix (Hayes and 

Wheelwright, 1979). Another classification can be made based on relationship between 

the variability of demand and throughput time (Schmenner and Swink, 1998). 

Competitive priorities, for example, can be identified based on the classification of 

production systems (job shop, flow, batch, etc.) and process variability (Schmenner and 

Vastag, 2006). Factors like flexibility, product performance (quality) and reliable delivery 

are becoming more important with a higher percentage of job shop or batch production 

in a production system, especially, if there is also a high degree of process variability.   

Pursuing the right goals based on a specific business strategy and production system 

is critical for the success of a manufacturing company and is measured and analyzed 

based on the Theory of Production Competence. Production competence is the capability 

of manufacturing systems to prosecute a market specific business strategy according to 

Cleveland et al. (1989). They were on the forefront to numerically assess production 

competence and found proof that it has a positive impact on firm performance, if 

manufacturing strategy and business strategy are aligned, which was the original thought 

of Skinner (1969). To follow the underlying reasoning behind these calculations it is 

important to start at the very top of organizational decision making, namely the strategic 

planning process. A business strategy defines how a company should compete in the 

market and which competitive goal should be pursued. The four most general competitive 

goals are quality, delivery, flexibility, and cost. It is highly important to decide which of 

these goals should be selected as competitive priorities based on the underlying business 

strategy (Vickery et al., 1997). Top-management defines competitive priorities based on 

company strategy and sets the performance dimensions on which the production system 

is assessed (Schönherr and Narasimhan, 2012). Competitive goals and priorities can be 

expressed in various performance dimensions to measure performance relative to 

competitors (adaptive manufacturing, cost effectiveness of labor, delivery performance, 

logistics, production economies of scale, process technology, quality performance, 

throughput and lead time, vertical integration) as mentioned by Cleveland et al. (1989). 

A plants' performance in those dimensions compared to its main competitors is referred 

to as organizational capabilities (in this case OM capabilities), or how capable a 

production system is in those dimensions. High organizational capabilities are critical for 

performance dimensions, which are based on the firm's competitive priorities. Alignment 

is necessary to ensure efficient and effective resource allocation to develop relevant 

capabilities based on competitive priorities. A firm can only have high production 
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competence if they have high capabilities in their selected competitive priorities. This 

implies a fit between OM capabilities and competitive priorities based on a viable 

business strategy to achieve higher firm performance (Schönherr and Narasimhan, 2012). 

Figure 1 depicts the four general competitive goals and related performance 

dimensions to be selected based on the BU’s strategy. All performance dimensions were 

mentioned in the literature (Cleveland et al., 1989; Vickery et al., 1993; Schmenner and 

Vastag, 2006) to be relevant components of production competence. Each component 

was measured on a seven-point Likert-scale regarding its value to the overall business 

strategy (“+++” meaning that the dimension is critical for the company and its strategy; 

“- - -“ meaning that the component is completely disregarded as a competitive factor; “Ø” 

meaning neutral). In the BU, quality issues are at the center of management attention and 

flexibility (lead times and manufacturing throughput times) is critical to complete a 

multitude of orders in batch production for a wide range of products. These are also the 

competitive priorities of the BU and the overall strategy is focused on the production of 

many different products, in small quantities, with short lead times and flexible labor and 

equipment to minimize initial investments. High quality requirements and a wide product 

range result in increased dynamics and complexity in the management of the production 

system and information about process performance becomes critical to control the system. 

In small-scale production there are almost no economies of scale and production costs are 

high due to low quantities of specialized products. Focus on quality conformance and 

throughput time make quality and flexibility competitive priorities of the BU with critical 

performance dimensions related to those priorities. This is also supported in the literature, 

since high process variability and batch production systems are typically characterized by 

a higher focus on the competitive goals of flexibility and quality (Schmenner and Vastag, 

2006). Usual performance dimensions for those competitive priorities are advanced 

processes, quality performance, effective labor, cross-training, low inventory and fast 

throughput times, and the ability to frequently change the product mix. 
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Figure 1: Competitive goals, priorities, and related performance dimensions of the BU.  

Source: Own elaboration. 
 

2.1.2. Quantitative Aspects (Factors are Measurably Relevant) 

Once the strategic aspects are clear the focus can shift towards a tactical level to analyze 

the highest potentials and to improve the most critical processes, which are measurably 

relevant for the firm. Cleveland et al. (1989) calculated production competence by 

multiplying the relative performance of each dimension (competitive capabilities) with 

its weight (competitive priority). Higher priorities get a higher weight and thus, are more 

important for the calculation of production competence of a firm. Firms with high OM 

capabilities in their respective competitive priorities have the highest production 

competence. The measurement of production competence was correlated with overall 

firm performance measures and a significant relationship emerged as shown in Cleveland 

et al. (1989) and Schmenner and Vastag (2006).  

Using mathematical models, simulation analysis and other scientific methods can 

significantly improve decision making on a tactical level based on strategic decisions and 

macro-level theories (Luoma, 2016). The goal is to identify processes and policies that 

best fit strategic needs and macro-level theory based on a quantitative analysis about 

competitive priorities and critical processes.  

2.1.3. Behavioral Aspects (Factors are Mutually Perceived to be Relevant) 

The third and final aspect of the assessment of critical organizational capabilities and 

competitive priorities is based on the cognitive systems (experience, judgment, and 

understanding) of the management team, which is often overlooked when it comes to 
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practical application of theories and models. Especially improvement projects, which 

require collaboration between different functional areas, can only be successful if 

identified capabilities are also mutually perceived and understood by the management 

team to be relevant for the production system. Individual managers might not understand 

the results of strategy development and quantitative analysis thoroughly and fail to 

identify their role and the contribution of their department to successfully complete an 

improvement project. This gap between the strategy, quantitative calculations, and 

understanding or judgment of individual managers and the whole management team 

should be closed so all sides can benefit when theoretical work is successfully applied at 

the shop floor. 

A balanced score card (Kaplan and Norton, 1996), for example, can set strategically 

relevant targets, but the tactical question to select the most important improvement 

activities might not be as comprehensible for some people. Therefore, Dhir (2001) 

deliberately included judgments of the management team and compared them to his 

mathematical model to assess the decision problem holistically with the input of the 

management team. This increased the understanding of management regarding the model 

and the outcomes of the analysis, which positively influenced the acceptance and 

application of the results regarding the most important factors for a manufacturing system 

design. The integration of the cognitive system with the environmental system (or 

management judgments and scientific model) can ensure that everybody can accept the 

results and tactical decisions made by the whole management team.  

Another problem arises when judgments and decisions are not transparently 

integrated into the decision task, which can cause conflict between people of different 

functional areas. Managers might be biased towards process improvement activities 

within their functional area and allocate more resources to their processes, which might 

not be the most beneficial for the overall production system. On the other hand, less 

motivated and engaged managers might want to shift attention away from their 

departments despite high potentials for improvement of the overall manufacturing system 

found in their processes. All these points can seriously endanger the successful 

application of theories, models, and calculations despite the correct identification of 

strategically relevant capabilities, priorities, policies, and processes.    
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2.2. The Role of Causal Ambiguity in Decision Making and Firm Performance 

People in organizations need to make decisions based on strategic, quantitative, and 

behavioral aspects. However, manufacturing systems are characterized by increased 

complexity and dynamics, which makes it difficult for managers, or groups of managers, 

to fully understand the impact of their decisions on the overall system. Hammond et al. 

(1975) emphasize causal ambiguity as the reason why people have difficulties to acquire 

knowledge and understand relations within complex systems. They define causal 

ambiguity as a result of numerous probabilistic, interrelated, and interdependent 

variables, which make it impossible to find clear causal relationships among the variables 

to understand a complex system. Lippman and Rumelt (1982) describe causal ambiguity 

as the degree to which decision makers understand relationships between inputs and 

results, and the concept is also used in the Resource Based View (Barney, 1991), to 

characterize inimitable resources as a source of sustainable competitive advantages. As 

observed in the BU of the automotive OEM and based on an extensive literature review, 

causal ambiguity can emerge from three sources when managers make group decisions 

in complex systems with the help of scientific methods.  

The first source was the inherent complexity of the manufacturing system due to, 

for example, dynamics, interconnectedness, or uncertainty, and how people dealt with 

these issues when making judgments and decisions. Mukherjee et al. (1998) mention 

detail complexity, or the presence of too many variables to comprehend problems in their 

entirety, and dynamic complexity, when distance and time make cause and effect difficult 

to establish. At the BU, managers of one department changed processes and were not 

aware of the effects their decisions had on the whole system or on other departments and, 

often, their solutions were not sustainable. For example, an improvement of the material 

tracking system was initiated by the logistics department, which was not entirely feasible 

for the manufacturing and quality departments. Many iterations were necessary to make 

the system work for all departments and the project was delayed without any benefits for 

the whole BU until the new processes were fully implemented. Despite substantial 

planning efforts of a cross-functional project team, nobody could fully conceptualize the 

entire system with all interfaces and dependencies. At the end, it turned out that 

manufacturing process improvements were necessary to streamline processes first to 

make them more suitable for the new material tracking system. Many resources were 

invested into the material tracking improvement project, while it could have been much 

more beneficial for the entire BU to improve manufacturing processes first. Wrong 
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prioritization, in principle, could have been avoided by using models or experiments to 

predict the future state of a system given a set of input variables (Kelton, et al., 2015; 

Luoma, 2016). Then, cognitive processes such as learning and thinking can help people 

to make sense of causal relationships based on their experience and judgments (Hammond 

et al., 1975).  

As production systems become more dynamic and complex, so do the scientific 

methods used to model and analyze those systems, and it becomes difficult for 

management to understand methods and results intuitively. This gap between 

management’s understanding and the actual results of the scientific work might be 

significant and it was a second source of causal ambiguity. Dhir (2001) addressed this 

issue in the context of interaction between management and model builders, or anyone 

who is utilizing scientific methods in organizations for that matter. By including the 

management team and their individual judgments into the scientific method, the 

understanding of management can be increased, and sources of disagreement and 

misjudgments can be identified. Dietvorst et al. (2015) proved that people tend to avoid, 

or distrust results calculated with the help of models and algorithms and rely more on 

their own heuristics and judgments, although the results of the models were better on 

average. It was difficult for the researchers (the author and an external consulting 

company) to convey a lot of information, coming from countless hours of complex model 

building, to management is a short amount of time. This resulted in misunderstandings 

and managers often, especially in the early phases of the project, superseded results from 

the model with their own judgments and experiences, which are generally prone to many 

errors and biases (Bendoly et al., 2010).   

The third source lies within the judgment patterns of various team members and in 

the way how they transferred tacit, complex, and interconnected knowledge within the 

team to ensure coinciding judgments to make cohesive group decisions. This problem of 

intra-firm causal ambiguity is one cause of silo-thinking, varying decision patterns, which 

are not synchronized towards a common strategy, and may lead to conflicts between 

people of different functional areas. Appelt et al. (2011) identify several measures of 

individual differences in judgment and decision making, like risk attitude, cognitive 

abilities, motivation, and personality, which can all be causally ambiguous for other group 

members. Some members of the management team are more motivated and willing to 

take risks, therefore drawing attention of improvement activities towards their 

departments, even when it might not be the most beneficial actions for the BU. People 
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also understand complex problems differently and could decide to not fully disclose their 

real intentions based on their personality, for political reasons, or based on interpersonal 

conflicts. It might be hard to follow the real intentions of people and the underlying 

reasons why they go in a certain direction, which can increase causal ambiguity among 

team members and impede their ability to make good decisions as a team. Zollo and 

Winter (2002) and King (2007) measure intra-firm causal ambiguity and the development 

and transfer of dynamic capabilities to reduce this source of causal ambiguity. Knowledge 

transfer, joint decision making and the commitment to these decisions becomes 

increasingly difficult if a management team cannot, or is not willing to, consolidate their 

knowledge to reduce causal ambiguity for the whole group (Hammond et al., 1975). The 

human aspect of management, decision making, and collaboration has become 

increasingly important to bridge the gap between individual, subjective judgments and 

actions, and a common understanding about the environment, based on models and 

mathematical analysis of the system (Hämäläinen et al., 2013). 

The problems of causal ambiguity within complex systems, scientific 

representation (models) of these systems, as well as causal ambiguity between the 

knowledge and judgments of individuals in a group, make it difficult for a management 

team to make sound decisions about major issues regarding the performance and 

improvement of a production system. These three sources lead to linkage ambiguity or, 

in other words, differences between perceived and measured resource-performance 

linkages that are difficult to resolve. Beleska-Spasova and Glaister (2013) analyze linkage 

ambiguity in export management by using structural equation modeling and a 

questionnaire to assess differences between perceived and measured importance of 

different factors on export performance observed for British export managers. Their study 

analyses intra-firm causal ambiguity and ways to reduce it to increase firm performance. 

In general, causal ambiguity has been a focus in strategic management to assess inter-

firm causal ambiguity (Powell et al., 2006; Reed and DeFillippi, 1990) in the context of 

the Resource Based View - RBV (Barney, 1991). Causal ambiguity can lead to difficulties 

to understand how complex and valuable resources are used efficiently and effectively 

and thus, can be utilized to protect resources against imitation by competitors. This results 

in a causal ambiguity paradox saying that inter-firm causal ambiguity increases firm 

performance because it makes resources harder to imitate by competitors, but it also 

makes it harder for the focal firm’s management to use these resources, therefore reducing 

firm performance (Lippman and Rumelt, 1982). King and Zeithaml (2001) and King 
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(2007) explore these phenomena and find that the positive effect of efficient and effective 

usage of resources within the firm outweighs the detriments of imitation between firms. 

Therefore, firms should strive to reduce causal ambiguity in general, even if it results in 

facilitated imitability for its competitors, for example, by hiring people from high-

performance firms to copy their processes. However, a barrier for imitation still exists if 

a company is capable to collectively control and decrease intra-firm causal ambiguity as 

a result of efficient usage of internally developed decision support systems. 

The purpose of this research is also to find ways to facilitate common understanding 

of different decision makers within the BU. This is done by reducing linkage ambiguity 

from all three sources to increase the quality of holistic decisions and the commitment of 

the management team. To achieve these goals, it is important not only to understand and 

analyze the dynamics of the environmental system (production system, supply chain, 

etc.), but also the cognitive system (judgment patterns) of the decision makers, because 

misalignment between the scientific methods and the organizational decision-making 

processes can destroy the results on both sides (Luoma, 2016). Therefore, a behavioral 

approach has been selected to develop a decision framework based on recent trends in 

behavioral operations (Bendoly et al., 2010) to integrate classic OM methods with 

behavioral analyses.  

2.3. Causal Ambiguity and Behavioral Operations  

Causal ambiguity is aggravating precise decision making in complex and dynamic 

environments and forces decision makers to rely on their judgments to assess the situation 

and make informed decisions. As a result, behavioral issues emerge which further 

increase the difficulty to make good decisions. Zhao et al. (2013) emphasize the fact that 

consumers, workers, and managers are all human actors in operations systems and supply 

chains and are subject to judgment and decision biases when facing uncertainty and 

complexity. This requires the development of alternative OM models that consider 

realistic human behaviors and judgments through experimental research. Gino and Pisano 

(2008) also mention that a behavioral perspective can lead to improved identification of 

appropriate management interventions and is a main area for research in behavioral 

operations (BO). 

Bendoly et al. (2010) provide an excellent overview of four of the main bodies of 

knowledge in behavioral operations and the issues that arise in relation to them. The field 

of cognitive psychology analyzes imperfections in judgment and decision making of 
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individuals, like heuristics and biases. Overconfidence and algorithm aversion (Dietvorst 

et al., 2015) are only two examples why people fail to make accurate decisions due to 

overestimating their own, or human ability in general, to plan and forecast in complex 

situations. To deal with these issues it is important to aid decision makers with 

transparent, understandable und applicable methods that enable them to make more 

accurate and objective decisions. Social psychology deals with the underlying forces that 

motivate decision makers to make the right decisions, like goals and feedback. Specific, 

measurable, and meaningful goals and appropriate, timely feedback can have a significant 

impact on performance of a team and the system in general. Linderman et al. (2003) found 

that goal specification has a severe impact on alignment and performance in Six Sigma 

projects. Strategic alignment, focused on competitive priorities and a clear action 

proposal to achieve certain goals, are critical to deal with issues coming from this field.  

The third body is group dynamics and covers issues in group decision making, like 

group think and the Abilene Paradox. Sometimes groups can make decisions that are not 

mutually accepted by all members initially, but people shift their preferences to reflect 

the consensus of the group, which can cause conflicts when it comes to implementation. 

Even more conflict can arise from the Abilene Paradox (Harvey, 1974) when people do 

not shift their preferences, but their decisions still reflect the group consensus because of 

group pressure. These conflicts can result in a breakdown spiral where poor performance 

results in internal and external blame, which increases the pressure on the group, 

intensifying group think and the Abilene Paradox. This reduces the performance of the 

group even more, and more conflicts and blame cause even worse decisions being made 

by the group. Those decisions are not mutually acceptable for all members of the group, 

however, a visual representation of judgments of group members can help to shed light 

on deviations in judgments and individual preferences. This can reduce group think and 

the Abilene Paradox because deviating preferences are immediately visible for other 

group members and conflicts can be prevented by avoiding unintentional changes of 

preferences due to group pressure.  

The final field is system dynamics and deals with the complexity in dynamic 

contexts, like nonlinearities, time delays and feedback processes. Complex and dynamic 

systems result in causal ambiguity and systematic dysfunctional behavior (Sterman, 

1989) due to misperceptions of feedback structure and feedback dynamics. Separation of 

cause and effect due to time delays can make it difficult for decision makers to understand 

the feedback structure within the system and they can misjudge the effects their decision 
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have on the overall system. Also, the magnitude of feedback (feedback dynamics, like 

accumulation or growth) can often be misinterpreted by decision makers and the final 

effect might be drastically underestimated. Here, simulation can be specifically helpful to 

increase the understanding and awareness of decision makers about the causalities and 

feedback loops within complex and dynamic systems (Bendoly et al., 2010). 

Causal ambiguity forces people to exercise their judgment which, in turn, is prone 

to behavioral issues of people making decisions in difficult environments. The argument 

is that relevant applied research in behavioral operations should deploy methodologies 

which reduce most of the behavioral issues described in the literature. Transparency is 

needed to unveil sources of disagreement and potential conflicts to avoid disorders in 

group decision making. A clearly defined and articulated research methodology is 

needed, and future users should be included in the computations and research to increase 

their knowledge and prevent them from falling back into their habits of using heuristics 

and biases. Cause-and-effect relationships towards specific goals should be clearly 

articulated to make sure that people can follow the right path towards goal achievement 

based on the company’s competitive priorities. Without a suitable support system to deal 

with imperfect group decision making, bounded rationality, and causal ambiguity in 

dynamic systems it becomes increasingly difficult to make precise decisions about 

complex issues.  
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3. Research Question and Methodology 

Causal ambiguity and behavioral issues of operations management result in increased 

difficulty to make complex decisions. New systems are needed to support managers 

making these decisions, considering all possible inputs available to them, and to 

researchers conducting in-depth empirical studies. This chapter deals with the integration 

of behavioral analyses and OM/OR tools to develop decision frameworks for the BU to 

select the most efficient improvement projects and design choices. It defines the research 

problem and the desired outcomes in the first part and the proposed methods to achieve 

these goals in de second part. The topics and methodologies of both papers are outlined 

to give an overview about the application and the desired contributions of both.    

3.1. Research Problem and Objectives 

It is critical for any company to adapt to changing internal and external factors through 

efficient and effective improvement of key processes. Companies can use a variety of 

improvement methods as frameworks for process improvement to increase performance 

of their production systems. Total Quality Management (TQM) is one of the oldest and 

most known management systems for quality improvement and integrates a holistic, 

quality-focused philosophy from product development, to manufacturing, until customer 

service, where quality should constantly be improved; see Martínez-Lorente et al. (1998) 

for an overview and origins of the term. It is described as an integrated management 

philosophy that builds on three principles: customer focus, continual improvement, and 

teamwork (Dean and Bowen, 1994). The two most common modern methods that were 

developed based on the TQM philosophy are Six Sigma (Hahn, et al., 2000), and Kaizen 

/ lean thinking / lean management (TAhB Academy, 2016). Six Sigma was introduced by 

Motorola and is a customer-focused effort to reduce defect rates and process variability 

to achieve a six-sigma level of process stability, meaning only 3.4 defects per million 

opportunities (Kumar and Gupta, 1993). Lean management is used by Toyota and is 

focused on constant reduction of “waste” (non-value adding tasks) in processes, therefore, 

resulting in an increase in efficiency and productivity through “lean” manufacturing 

systems based on just-in-time production (Shah and Ward, 2007).  

Continual process improvement activities are at the heart of the previously 

described improvement methodologies. The selection of improvement projects and 

activities has been a major focus in the literature and is key for the successful application 
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of improvement methods (Zantek et al., 2002; Kumar et al., 2008; Li and Rajagopalan, 

2008; Chakravorty, 2009; Büyüközkan and Öztürkcan, 2010; Filho and Uzsoy, 2014). 

The problem of selecting the optimal set of improvement activities with limited resources 

is well established in the literature. However, multi-disciplinary approaches addressing 

the integration of hard and soft OM/OR are not very prominent and most apply either the 

one or the other. In this thesis this gap is filled by adding new methodologies from other 

disciplines to the tool kit of OM/OR. The call to conduct more research regarding the 

“soft issues” of OM/OR is answered without neglecting the hard facts and quantitative 

computations needed to ensure robust results. 

This work introduces integrated concepts to help management with improvement 

project selection and decision making for global projects under causal ambiguity. The 

applied methodologies combine qualitative and quantitative factors for the selection of 

continual improvement activities in the BU. They are applicable for all improvement 

methods that use continual improvement cycles (Six Sigma, Lean, TOC). They also tie 

the selection process to the unit’s strategy and competitive priorities to achieve a 

consistent framework from top-level theory to actual application on the shop floor. The 

goal is to apply new concepts to reduce the previously mentioned issues of causal 

ambiguity and complexity. Support systems are introduced to aid decision makers in the 

complex production system of the BU within the two exploratory case studies of the 

research papers. Their applicability was studied within the BU to ultimately help 

management to improve the overall design of the production system and its critical 

processes. 

3.2. Design and Methodology of the Case Studies 

Both case studies include a behavioral and quantitative aspect to deal with the previously 

mentioned issues of causal ambiguity. Both use inputs of the experts of the system to 

include their opinions, expertise, and judgments for scientific analyses. They are 

visualizing the results of cognitive processes of the experts within the BU and create new 

inputs for decision problems they aim to address. The methodologies were selected to 

deal with difficulties resulting from causal ambiguity as mentioned in chapter two. The 

first methodology is a lens model, a tool of Social Judgment Theory (SJT), visualizing 

human judgment to compare it against quantitative analyses of an environmental system 

in which these judgments are made. The second methodology is concept mapping to 
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create a visual interpretation of a subject matter based on the inputs of an expert team to 

help them categorize and visualize areas of improvement in a complex system. 

3.2.1. Social Judgement Theory and The Lens Model 

Social Judgment Theory (SJT) is used to understand human judgment within an 

ecological context (Cooksey, 1996), or to analyze attitude changes of individuals based 

on judgmental processes and effects (O’Keefe, 2016). The first point emphasizes the 

representation and understanding of individual decision patterns in various scenarios and 

judgment tasks to better describe the outcome of a judgment processes within a given 

context. The latter focuses more on influencing decision patterns and individual attitudes 

using persuasive communication to change positions towards various criteria. However, 

both focus on the cognitive processes, like experts understanding of complex systems, or 

the level of involvement and attitude towards certain questions, that determine individual 

judgments and how individuals perceive possible solutions to decision problems.  

Most decision problems include many different input factors (or “cues”) with 

complex probabilistic relationships, which make it difficult to assess causalities in the 

system and to assign weights or ranks to various solutions for specific problems. SJT is 

analyzing differences between causal relationships within the environment based on 

several input factors and how decision makers are using those factors as cues for their 

judgments. These causally ambiguous relationships are at the center of individual 

judgments and are highly dependent upon the judge’s cognitive processes (Hammond et 

al., 1975). SJT aims to describe the outcome of cognitive processes when the decision 

makers are facing complex situations and causal ambiguity with the results pointing 

outwards from an individual. It is not particularly concerned with inwards pointing 

stimuli, coming from the environment, but is rather focused on the cognitive processes 

and the results of the judgments in relation to the environment (“what really is” compared 

to “what a person thinks there is”).  Therefore, both, the environment, as well as the judges 

can (and should) be assessed in the same way based on the principle of parallel concepts 

(Brunswik,1952; Brunswik, 1956). Data can be analyzed with scientific models and 

calculations on the surface for the environmental system, and in the same way inferred 

inputs (cues) can be analyzed in the depth of the user’s cognitive system. This distinction 

between surface and depth, and given and inferred, is critical for SJT, because it lays the 

foundation for the study of the differences between them. These differences lie hidden in 

zones of ambiguity, where causal ambiguity makes it impossible to simply analyze what 

is inside the black box.  However, the relation between the impact of the given inputs and 
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the utilization of the inferred inputs, as perceived by the individual, can be assessed using 

the lens model. 

The lens model is based on the principle of parallel concepts (Brunswik, 1956) and 

describes the differences and similarities of an ecological system (production system) and 

the cognitive system (judgments) of the decision maker with the same types of constructs. 

It represents causally ambiguous processes on both sides in the same way and can 

therefore be used to study and analyze cognitive systems of individuals in relation to the 

environmental system. These processes describe the mediation of uncertain information 

within the environment through various observable input indicators (cues) and the usage 

of those cues by the management to achieve reasonably accurate inference about a matter 

of interest (Hammond, 2007). The results can be used by a management team to make 

more informed and cohesive decisions for complex problems. The method itself 

facilitates cooperation between the management team and model builders, which is also 

one reason why it is preferred over other methods and theories (Dhir, 2001). These levels 

of transparency and involvement also facilitate the creation of a well-defined and 

mutually acceptable action proposal, which should be the goal of any OM/OR 

intervention (White, 2016). 

The focus of this study is to use the lens model approach to expand production 

competence of the production system based on effective and efficient implementation of 

jointly made decisions to improve operations based on a continuous improvement process 

(CIP). Extending organizational capabilities without additional investments into capacity 

is more efficient and can result in sustainable competitive advantages (Vastag, 2000; 

Ryall, 2009), especially for small-volume production systems with less available 

resources. To allocate the required capacity to successfully execute complex 

improvement activities, it is often necessary to build teams of different experts to focus 

on a single major project. This means that it is important to find improvement projects 

with the highest potential benefits for the production system (Büyüközkan and Öztürkcan, 

2010; Filho and Uzsoy, 2014), as well as the right team composition, methodology and 

implementation plan to successfully complete the project.  

The lens model can be used to describe the outcome of cognitive processes and how 

judges cope with causal ambiguity in decision tasks based on their preferences, 

experience, attitude, and the inferred variables. It can also equally represent the outcome 

of a scientific analysis based on some given variables, like the results of a simulation 
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analysis. Figure 2 depicts the application of the lens model methodology in the first 

research paper. Throughput times are analyzed as the criterion (dependent variable) with 

a regression analysis based on data coming from a discrete event simulation on the left 

side of the lens model. The impact of different cues, or different improvement activities, 

is analyzed to define the most important activities to reach previously defined competitive 

goals of the BU. On the other side of the lens model, the same cues are analyzed within 

the judgment analysis to create the same type of information about the cognitive systems 

of all judges to be compared with the results of the regression analysis. The differences 

and similarities between the results are then analyzed to create an action plan based on 

the information created on both sides of the model.  

 

Figure 2: Lens model application with defined criterion and cues. 

Source: Own elaboration. 
 

3.2.2. Concept Mapping and Structured Conceptualization 

Trochim (1989) defines the methodology as: “Concept mapping is a structured process, 

focused on a topic or construct of interest, involving input from multiple participants, that 

produces an interpretable pictorial view of their ideas and concepts and how these are 

interrelated”. This methodology has a similar characteristic of inputs and outputs as those 

used in the lens model. It takes inputs from the cognitive systems of a team of experts 

and, through quantitative computations, visualizes results in an intuitive way to make 

them more usable and understandable for practitioners. The output of the analysis, one or 

more concept maps, is a structured, labelled, and weighted set of clusters representing the 

conceptual domain of a problem. 
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Figure 3: Illustrative example of a hypothetical concept map with 89 statements.  

Source: Trochim and McLinden (2017). 

 

Figure 3 depicts a hypothetical concept map with 89 statements as an illustrative 

example (Trochim and McLinden, 2017). Statements that represent the conceptual 

domain of a construct of interest are gathered by the participants to define the scope of 

the analysis (usually through brainstorming or similar techniques). These statements are 

then grouped by the participants to select similar statements to form groups of related 

points. A point cloud is created where the distance of statements/points of related groups 

is shorter compared to others that were not that frequently grouped together by the 

participants. Clusters within the point map are created to label accumulations of points in 

a meaningful way to be able to interpret the map. Points, and later clusters of points, can 

then be weighted by the participants (e.g. Likert-Scale) to find the most important clusters 

to be improved as seen by the participants and experts of the production system. 

Structured conceptualization is a way to transform tacit knowledge of individuals 

about a complex and causally ambiguous system into usable information for the 

improvement of this system. This was done by analyzing quality issues of the production 

system in the case study of the second paper to address the second competitive priority of 

the BU – quality and quality conformance. The expert team of the BU named 41 

statements related to problems that affected quality performance of the production system 

with different connections and relations between those problems. A concept map was 
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created to find clusters of related problems to define improvement activities in a more 

efficient and effective way using a structured approach based on tacit knowledge of the 

team of experts. The results were then used to create a causal loop diagram to assess 

causal relationships between points and clusters. Based on Trochim (1989), one of the 

most important and difficult steps in planning is the initial conceptualization, which 

ultimately determines the success of all following steps in a project. The idea of the 

methodology applied in the second research paper is the utilization of the created concept 

map as an input for further causal analysis (e.g. causal loop diagram, fishbone diagram, 

etc.). This gives a tailored solution for specific problems and facilitates decision making 

based on better and more detailed understanding of complex systems. Similar to the lens 

model application, an action plan was developed based on the results of the concept 

mapping methodology and the causal loop diagram after calculating the weighs and 

relative importance of each cluster, and analyzing casual relationships between points and 

clusters, respectively. The BU could improve clusters of problems with specific solutions 

to increase quality performance of the production system with the help of the information 

created in the case study of the second paper.  
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4. Theoretical and Practical Results and Implications 

The last chapter deals with the development of an integrated action proposal for the 

management of the BU to summarize the results of the research papers. It summarizes the 

lens model approach and compares it to a traditional approach of managerial decision 

making and OM interventions. The action proposal of the concept mapping study is added 

to the decision framework of the lens model analysis to create a holistic picture for 

resource allocation and improvement project selection. The goal is to increase the 

alignment and commitment of the management team to ultimately facilitate practical 

application of the results generated by the analyses. From a theoretical point, the inter-

disciplinary and multi-level approach is described in more detail with a focus on how this 

approach can be beneficial for applied research and theory development in the future.    

4.1. Development of an Integrated Action Proposal  

Action proposals support a causal link between a course of action and its consequences 

and can be used to justify how certain solutions, based on theoretical research and models, 

lead to an anticipated and desired outcome on the process-level of a production system 

(White, 2016). Friend and Hickling (2005) point out that OR-interventions and models 

rarely solve organizational problems directly and if they were to be relevant, useful and 

meaningful for practitioners, they need to be embedded in action proposals, or 

commitment packages, as they call it. Therefore, this method can be used, in combination 

with the lens model methodology, to reduce causal ambiguity between the management’s 

understanding and the design, calculations and results of the model itself (Ladinig et al., 

2020).  

A commitment package, as developed by Friend and Hickling (2005), is an action 

proposal that defines a set of immediate actions and future decisions to achieve 

incremental progress in a continuous planning process. It defines what actions must be 

taken immediately, or if more exploration is necessary, based on time and uncertainty of 

the decision areas. This means that some decisions should only be made if uncertainty is 

below a certain level and if there is not enough time for further exploration. It also leaves 

future decision space for deferred choices and contingency planning if there is still enough 

time to analyze further choices or to reduce uncertainty by doing more research. Note, 

that this is only one isolated concept out of the whole framework to assist decision makers 

in a continuous planning process but is an excellent tool to summarize the results of the 
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lens model methodology. It can also be used synergistically with continuous improvement 

cycles based on Six Sigma or Lean and is designed to work in environments with high 

uncertainty and causal ambiguity where judgments are needed to make complex decisions 

(Ladinig et al., 2020). 

4.1.1. Results of the Lens Model Analysis and Action Proposal 

The results of the lens model analysis include all three previously defined aspects of the 

identification of competitive priorities and processes. The strategic aspects to define the 

criterion (manufacturing throughput time) and the cues (Figure 2) were considered based 

on the Theory of Production Competence and were important performance indicators for 

the BU. The simulation and regression analysis dealt with quantitative aspects of 

identifying competitive priorities and improvement choices. Finally, behavioral aspects 

were considered as well by using judgment analysis to include the management team 

during the research project and their experiences as an input for a holistic analysis. The 

ladder graph of Figure 4 shows the results of both sides of the lens model analysis. The 

indifference of the management team can be seen on the right side and they could not 

mutually agree on a single-most important cue with a significant margin. The simulation 

on the other hand generated clear results to focus on a specific factor with the highest 

potential for improvement of throughput time (Ladinig et al., 2020).  

 

Figure 4: Ladder graph from de lens model analysis depicting the results of both sides. 

Source: Ladinig et al. (2020). 
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By combining the results of both sides, it is possible to create an action proposal 

including the results of both analyses coming from the simulation and the management 

team as seen in Figure 5. An immediate action that should be taken based on this research 

is to initiate a training program to improve manual processes and to reduce processing 

variability. Stable and improved processing times had to be the number one priority of 

the BU and it was implemented through an extensive production preparation process 

where all manual processes were trained, improved, and standardized. Also, a new 

internal audit system should be created to confirm adherence to the new standards by the 

workers and test the new standards to achieve the desired effects. This allows the 

management team to continually revise standards if necessary and gives them a better 

overview about the desired and actual performance of the workforce based on training 

effects for the new processes. This continual improvement cycle for training, 

standardization and process improvement was the new main priority for the BU and a 

clear focus for resource allocation (Ladinig et al. 2020). 

 

Figure 5: Commitment package, or action proposal as a result of the lens model analysis. 

Source: Ladinig et al. (2020). 

 

Allocation of resources into improvement of TPM and master production 

scheduling (MPS), on the other hand, was deferred and required further investigation, 

data collection and analysis. Those were the two processes were the management team 

deviated from the DES and at least one side valued it as a top-priority and the other mostly 
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neglected it. This makes both processes good candidates for further explorations and 

differed choices in Figure 5, as it is obvious that no consensual decision could be made 

based on the lens model analysis. In this case the continual improvement cycle starts again 

with a “plan” or “define” stage in the future and no resources should be deployed without 

a clear understanding about the potential benefits of those processes. Also, no further 

resources were assigned to the bottleneck optimization process since it was the lowest 

ranked of the top-group for the management team and the lowest overall in the DES. 

Contrary to the Theory of Constraints, there was no immediate concern to closely monitor 

and improve the bottleneck until other processes had been improved (Ladinig et al. 2020). 

The action defined for scrap and rework led to the second paper and case study. 

4.1.2. Results of the Concept Mapping Analysis and Action Proposal 

The concept map (Figure 6) combines similar problems into clusters of statements 

(ranked by their perceived importance) and shows connections and importance ratings. 

This visualization method is based on expert knowledge and aims to reduce causal 

ambiguity in decision making regarding quality management (Ladinig and Vastag, 2020). 

 

Figure 6: Concept map of quality issues with eight clusters. 

Source: Ladinig and Vastag (2020). 

 

Product quality in the production of premium sports cars is of utmost importance 

and has been identified as a competitive priority of the production system, therefore 

complying with the strategic aspect of the identification of critical process improvement 

activities. The structured conceptualization approach, two-dimensional visualization, and 

weighting of the results based on mathematical computations ensures that the 
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requirements for the quantitative aspects are met as well. By using brainstorming to define 

the conceptual domain of a problem, with inputs coming from the experts of the 

production system, it is assured that the behavioral aspects are considered as well to fulfill 

all requirements for the identification of competitive priorities.  

 
Figure 7: Commitment package as a result of the concept mapping analysis. 

Source: Ladinig and Vastag (2020). 

 

Several tools and methods of quality management have been defined based on the 

results of the concept mapping analysis to be implemented at the business unit. The 5S 

methodology (“Sort, Set/Straighten, Sweep/Shine, Standardize, Sustain” a method of 

Lean Manufacturing to improve workspace conditions and cleanliness) should be 

implemented, especially for metal disc and pressing tools for cluster one (second-highest 

rating in Figure 7, with 3.275 out of 5). Advanced Product Quality Planning (APQP) 

should be implemented to increase the influence of the production system regarding 

product manufacturability and error prevention for specific production processes. This 

was the outcome of the analysis for the highest-rated cluster (cluster one) to deal with 

issues related to complex small-scale production factors. The final tool to be implemented 

at the business unit was Shop Floor Management (SFM) to address issues of the third-

ranked cluster containing problems due to worker failure to detect and prevent errors 

(Ladinig and Vastag, 2020). 
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This means that, for the first improvement cycle within the BU, two immediate 

decisions for specific sets of actions were made to improve two critical processes - one 

for each competitive priority. Resources were allocated accordingly, with the majority 

going into the execution of the immediate action plans, and the rest could be invested into 

further analysis of the other important factors that required more information.  This 

ensured efficient and effective selection of improvement projects based on the strategy of 

the BU, measurable indicators, and judgments of management. 

4.2. Increasing Alignment and Commitment of the Management Team   

The difference between regular approaches to translate strategy into the right action, by 

using a balanced score card (Kaplan and Norton, 1996), for example, and the lens model 

approach is shown in Figure 8. On the left side, the strategy and competitive priorities are 

developed top down by the top-management of the BU and relayed to other departments 

to take the necessary actions to reach the BU’s goals. This is countered, however, by 

specific factors from each department that might cause conflicts when it comes to making 

coherent and mutually acceptable policies. Logistics, production, or quality departments 

(to name a few; many other departments could also play an important role) could have 

conflicting individual goals, which they might prioritize higher than overall BU goals. 

Tools and methods are needed to reduce the principal-agent conflict, like appraisal 

systems, or a balanced score card, to make people act in the best interest of the BU. 

Additionally, there is causal ambiguity and bounded rationality, which makes it even 

harder to make the right decision to reach BU goals based on its competitive priorities. 

Support and additional information for decision makers can be spread throughout 

the organization on different organizational levels as indicated with the arrows for 

“consulting” and “simulation” in Figure 8. Managers with different sources of 

information can use it to pursue varying goals and make decisions based on a different 

understanding. Without transparency and mutual understanding, it becomes exceedingly 

difficult to make concise group decisions, especially when considering causal ambiguity 

and bounded rationality. In this case, department managers make ill-advised decisions 

based on biases and their own heuristics. Furthermore, they do not trust sources of 

information coming from analyses and calculations from other departments, because of 

algorithm aversion, as they did not participate in any analysis. Sources of disagreement 

cannot be identified, and conflicts arise because of decisions that are not mutually 

acceptable and targeted towards reaching common BU goals. The top-management of the 
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business unit, therefore, cannot be sure if decision makers of all departments are aligned 

towards the overall strategy as it was the case in this research and, for example, in King 

and Zeithaml (2001).   

 

Figure 8: Comparison between regular policy making and lens model approach. 

Source: Own elaboration. 

 

The right side of Figure 8 depicts the policy-making process using the lens model 

methodology and starts with strategy and competitive priorities on top as well. In this 

case, however, all departments and the top-management of the BU participate in the 

judgment analysis where their preferences are made transparent and relatable for the rest 

of the group. This integration of judgments and the involvement of the management team 

ensures better understanding towards a matter of interest, therefore reducing the 

likelihood of conflicts and misunderstanding within the group. Also, causal ambiguity is 

reduced due to the left side of the lens model, giving essential information about the 

environment based on various methods, tools and calculations from consultants, 

researchers, or other sources of additional information. This also ensures a proper 

interface between the scientific work of researchers and application by practitioners as 

the model requires an analysis of the environmental side to be compared to the judgments 

of the management team. This integration also facilitates the reduction of the only 
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remaining source of causal ambiguity (see Chapter 2.1.3), namely management’s 

understanding of the methodology and results of the scientific work.   

The clear interface for the practical application of scientific work is a crucial 

advantage of the lens model and facilitates implementation of scientific methods 

throughout the organization.  It also increases the relevance of OR/OM interventions due 

to the clear input (environmental analysis on the left side of the lens model based on 

various research methodologies) and output (action plan). Therefore, it is to be hoped that 

it can also increase the value and relevance of various other OM/OR applications in 

completely different settings.  

4.3. Multi-Level and Inter-Disciplinary Connection of Theories 

The application of an action proposal can be facilitated by a clear connection of theories 

over different organizational levels as shown in Figure 9. Three links are important to 

make macro-level theories (like the Theory of Production Competence) usable for line 

managers who ultimately make the operative decisions to improve certain processes. 

When such links are strengthened, it becomes easier for management to align with the 

overall strategy of the company and to follow recommendation from scientific analyses 

based on theory. 

 

Figure 9: The main-links from macro-level to individual or group-level application. 

Source: Own elaboration. 

 

The first link ensures a consistent and logical flow of ideas and concepts from the 

macro-level to the micro-level, which is also tied to the strategy of the firm. For example, 

a firm can achieve competitive advantages if it can improve competitive priorities and 

production competence through the efficient and effective management of processes on 

the micro-level. Process management, on the micro-level, based on the lens model 

analysis is the driver to achieve macro-level goals defined by the macro-level theory. On 

the other hand, competitive priorities, defined on the macro-level, determine the processes 
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to be considered in the lens model approach to ensure proper scope in the application of 

the methodology. The lens model can then be used on the process-level to find processes 

with the highest influence on competitive priorities and firm performance can be 

advanced by using continual improvement. 

The second link transmits information from the process-level to the individual or 

group level to be applied based on the framework of continual process improvement. This 

is only possible if the information from the environmental system coincides with the 

cognitive systems (judgements and behavior) of the individuals, or groups, at least to a 

certain degree. If the management team cannot understand and agree upon the usage of 

the information, they will not be able to manage processes effectively and holistically 

with the overall strategy in mind. This link can be strengthened by analyzing the 

judgments of management and include them into the higher-level theories and concepts, 

to make sure that they agree with the strategy and the most important actions to be taken 

on the individual level. This is the second point to emphasize as a benefit coming from 

the lens model, – or concept mapping methodologies, as it allows a management team to 

follow the path from macro-level theory to practical application of the results. The correct 

scope is defined based on the top-level theory, as mentioned above, and it facilitates 

precise operative decisions making to select the most important factors based on micro-

level processes and behavioral factors of the group, responsible for applying the results.  

To summarize, the strategy and the understanding why it can be used to create 

competitive advantages for the firm are developed on the macro-level, which is then 

connected to the micro-level via the first link. Here, the information is created based on 

the higher-level strategy and theory to find the right processes that work best to achieve 

strategic goals via short- and medium-term actions. A strong second link connects this 

information to the individual judgments of the management team who can then put the 

strategy into action because they understand causal relations of their actions to achieve 

the main goals of the firm.  

Rousseau (1985) already emphasized the importance of levels in organizational 

research. By focusing on the analysis of isomorphism between different organizational 

levels and scientific disciplines it becomes easier to break down macro-level theories to 

the individual or group-level to facilitate practical application. Composition models (e.g. 

the lens model) and multi-level theories can help to increase the usability of macro-level 

theories for lower levels of an organization and to avoid fallacies when conducting 
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research aimed at multiple organizational levels. The management of competitive 

priorities in the Theory of Production Competence and in process management, for 

example, describe the same concept from different organizational levels and Social 

Judgment Theory (SJT) adds an inter-disciplinary aspect to it when it comes to individual 

understanding and judgement about decision making regarding improvement project 

selection.   

Another example for the use of isomorphism between different organizational 

levels in an inter-disciplinary context is the analysis of causal ambiguity on the firm level, 

based on the Resource Based View (RBV), and on the individual (or group) level, based 

on SJT. Examining individual decision makers’ understanding and knowledge of cause-

and-effect relationships enables us to understand how firms can manage causally 

ambiguous resources with the help of SJT. This understanding, coming from SJT, can 

then be used to create causally ambiguous resources as a source of sustainable competitive 

advantages on the macro-level for the RBV (Barney, 1991). Causal ambiguity is a 

protection against imitation of resources, because it makes it difficult for competitors to 

understand and learn about cause-and-effect relationships that make the resources so 

effective and valuable, and to copy and use them to create the same effects and benefits 

(Ryall, 2009). However, this is also the case for the incumbent firm’s employees (see 

chapter 2.2 and the causal ambiguity paradox), therefore, there must be something that 

enables them to understand and communicate more effectively than their competitors in 

order to be able to use these causally ambiguous resources to their maximum potential. 

SJT is focused on the analysis of the reasons of superior understanding and 

communication on the individual, - and group level and can draw inferences about the 

creation of inimitable resources on the firm level. This connects top-level theories and 

practical application from two different points of view, describing the same phenomenon 

in an integrated and comprehensive way. 
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5. Conclusion 

Human judgment is characterized by systematic errors, biases, and misjudgments 

(Bendoly et al., 2010; Bazerman and Moore, 2009) that affect efficient and effective 

managerial decision making. Even with models and sophisticated calculations it is 

sometimes difficult for managers to understand, trust, and use additional information 

correctly (Dietvorst et al., 2015; Dhir 2001). In this research, some of these difficulties of 

decision making in complex and dynamic systems are attributed to causal ambiguity and 

it presented a way to reduce linkage ambiguity from several sources. The strategy of the 

BU was refined based on the Theory of Production Competence. Performance dimension 

were analyzed based on the BU´s competitive priorities to find the most important areas 

for improvement. The lens model and concept mapping helped to assess processes and 

related problems to define the most important improvement activities to increase 

organizational capabilities in the areas of highest strategic relevance to improve 

production competence of the BU. This method ensures that operative decisions made, 

based on the lens model and concept mapping results, are aligned with the strategy of the 

company and support goal achievement with a clear focus on competitive priorities, 

which, ultimately increases firm performance. 

Causal ambiguity has been a matter of interest in social judgment theory (Hammond 

et al. 1975; Cooksey, 1996; Hammond, 2007) and in management theory (Lippman and 

Rumelt, 1982; Barney, 1991; King and Zeithaml, 2001; King, 2007) for a long period of 

time. This study aims to integrate both research streams in a synergistic way to maximize 

the value of information from OM interventions to be highly relevant for practitioners. 

Managers in complex production systems rely more than ever on good collaboration with 

their colleagues and with researchers and model builders to make sound decisions for 

difficult problems. This method is valuable even for production systems without 

extensive data collection of their processes and can be easily implemented in the decision-

making processes of the management team. All managers are included into the decision-

making process and valuable insights can be gathered by making all judgments available 

to top management. This was also observed by King and Zeithaml (2001) who reported 

a high interest of top managers regarding the perception of their colleagues and middle 

managers about resource-performance linkages, which was also the case in this research 

(Ladinig et al., 2020). They also find that the transfer and collaborative exploitation of 

resources and competencies can lead to increased firm performance, which is why this 
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research aims to make this information available for the whole management team to 

reduce causal ambiguity and to facilitate knowledge transfer (see also Szulanski, 1996). 

Furthermore, Bazerman and Moore (2009) name six strategies to improve 

managerial decision making: (1) use decision-analysis tools, (2) acquire expertise, (3) 

debias your judgment, (4) reason analogically, (5) take an outsider’s view, (6) understand 

biases in others. This method facilitates number one, two, three and six by giving visual 

representations of the manager’s judgment and of the whole group to make biases 

understandable and transparent for the whole team by using the proposed method. It is 

also useful for the second strategy because the whole management team is included in the 

process and they understand the results and insights of the model, and subsequently, the 

environmental system. This methodology does not fully conform to the fourth strategy, 

which emphasizes learning from two exercises, that have the same lessons and are related, 

to create more generalizable insights for the learners. However, looking at the problem 

from two sides, a behavioral and environmental, still gives some benefits regarding 

analogical reasoning from two different sources of information to maximize 

generalizability of results. Also, an outsider’s perspective can be included when external 

experts participate in the judgment analysis. While it is still the management’s job to use 

the information appropriately, the method increases the chances to successfully reduce 

problems in managerial decision making, like biases, bounded awareness and emotional 

influences as described by Bazerman and Moore (2009). 

From another theoretical point of view Bromiley and Rau (2016) scrutinize causal 

ambiguity, as a necessity for imperfectly imitable resources, in their critical evaluation of 

the RBV. Both, the firm who possesses the resource and their competitors, must face the 

same level of causal ambiguity, so the resource cannot be easily imitated by hiring people 

of the firm with present competitive advantages (Lippman and Rumelt, 1982; Barney, 

1991). The question they raised was how to use and measure something that is not 

understandable or imitable as a source of competitive advantages? While causal 

ambiguity is not directly measured, the lens model can be used to observe the effects it 

has on the judgment and decision making of the management team. If a management team 

understands better how to use a set of resources within the whole organization holistically, 

they can use these resources more efficiently due to better decision making, and the 

resources, as used by the company, cannot easily be imitated. The same argument was 

made by Samson and Whybark (1998) and Vastag (2000) who focus on soft issues and 
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organizational capabilities to outperform competitors due to better decision making and 

usage of manufacturing inputs, investments, and choices.  

SJT gives us an inter-disciplinary way of looking at causal ambiguity and its role 

in operations management from a technical and behavioral point of view. Valuable data 

can be integrated into decision support systems by including the experience, knowledge, 

and judgments of the management team into combined behavioral and OM research. 

Modeling, behavioral experiments, and analyses can complement each other and can be 

used to cross check findings as well as enhance the insights learned through traditional 

methods (Bendoly et al., 2006). Sources of causal ambiguity within the management team 

and between the team and its environment can be identified and analyzed to make better 

decisions on resource allocation in complex and dynamic production systems. It can also 

uncover misjudgments and potential sources of conflicts between people of different 

functional areas, and even within specific teams, that could eventually cause 

improvement activities to fail to deliver the desired results. A lot of research exists on the 

best way to improve production systems, Goldratt and Fox (1986) or Ferdows and De 

Meyer (1990), to name just two, but ultimately it depends on the judgment and alignment 

of the decision makers to go in the same direction and work together to achieve common 

goals. Production systems, or supply chains are, after all, complex social systems, where 

behavior of individuals, groups, or whole organizations is the central driver of operations 

and performance (Gino and Pisano, 2008). However, OM/OR research plays a critical 

role in this process to find causalities and new ways to understand and master causal 

ambiguity in an increasingly complex environments, like overly complex modern 

production systems (Ladinig et al., 2020).  

This research analyzed causal ambiguity in two specific case studies and showed 

that several sources of causal ambiguity are present within the management team and 

their environment. However, additional research is necessary to get a more general picture 

about causal ambiguity in complex production systems and how it affects decision 

making in the long run for other dependent variables as well. This study differs from other 

studies of causal ambiguity, continual improvement project selection and judgment 

analysis (Beleska-Spasova and Glaister 2013; Büyüközkan and Öztürkcan, 2010; Dhir, 

2001), because it includes judgments and simulation results in an operations management 

context from an intra-firm perspective for single cases. It confirms the findings of the 

other research regarding linkage ambiguity and adds to the literature by observing causal 

ambiguity even in relatively homogeneous groups of managers from the same company. 
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It also shows that integrated information from the DES and the judgments of the 

management team can be used to create holistic, mutually accepted action proposals to 

increase the relevance of OM interventions for practical applications (Ladinig et al., 

2020). This method is designed to assist management in their decision process over 

several improvement cycles and longitudinal analyses are necessary to further study the 

effects this method has on the quality of the decisions being made in specific production 

systems.  
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Sensemaking Support System (S3) for Manufacturing Process 

Improvement 

 

Production management teams often face unfamiliar situations where each team 

member must understand new phenomena individually before the team can make 

mutually understandable and acceptable decisions. Contradicting subjective 

judgments can distort the group’s decision-making process because team members 

understand situations differently and are generally prone to behavioural biases. 

This paper presents the development of a sensemaking support system (S3, S cube) 

for selecting improvement projects in a complex, small-volume batch production 

system of a premium car manufacturer. All phases of the sensemaking process are 

facilitated by making various sources of information available to a team of 

managers and experts to reduce conflicts regarding the selection of improvement 

projects. S3 is based on a lens model which combines judgments of the 

management team with discrete event simulation and provides visual 

representations of the differences and misjudgments related to various 

improvement options. The results – that can easily be generalized to many similar 

settings – indicate different understanding and lack of coherence within the 

management team which prevents them from defining mutually acceptable actions. 

This is countered with the creation of an action proposal, summarizing, and 

visualizing causal relationships, and connecting them to improvement options to 

improve performance of the production system. 

Keywords: sensemaking support system, lens model, manufacturing process 

improvement, automotive industry, discrete event simulation, judgment analysis 

1. Introduction 

Based on a true story, Norman Maclean’s (1992) book Young Men and Fire describes the 

events of a deadly fire disaster happening in Montana when several fire jumpers were 

dropped to deal with a small wildfire that they expected to have under control within a 

short timeframe and would not impact a surface area larger than 100 acres. Unique 

characteristics of the terrain, unknown to the firefighters, however, caused the fire to 

increase rapidly and turn towards their direction, which did not make sense to them and 

served as the basis for Weick’s (1993) analysis about their sensemaking processes during 

the incident. Surprised by the turn of events they failed to communicate properly because 

everybody had a different understanding of what was happening, and all responded 
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differently to this dire situation. They failed to formulate a mutually accepted action plan 

and, in the end, almost all the first responders died or suffered major injuries and the fire 

spread upon an area of 4,500 acres.  

A similar situation, albeit not as catastrophic, was observed by the authors within 

a small-volume job shop production system of an automotive OEM and serves as an 

example of the applicability of Weick's sensemaking framework in operations 

management. Managers, assigned to deal with stagnating manufacturing performance, 

initially were inclined to use the methods they were familiar with from large-scale 

production. However, none of the improvement projects initiated led to significant 

performance gains, which did not make sense for management, and the ‘fire’ kept 

spreading endangering the survival of the business unit. Managers needed to find different 

explanations for situations at the new production system. Many failed and still made 

decisions based on old misconceptions because they expected to be able to work in the 

same way in the small-scale production system and that the same measures and actions 

would lead to the same results based on their own individual experiences. This led to two 

problems. First, decisions made in the old mind-set were generally counter-productive or 

sub-optimal because of the different characteristics of the production system, and second, 

decisions clashed with those of other managers and led to conflicts or at least missing 

support and understanding from their colleagues.  

After several years and several failed attempts to improve specific parts of the 

production system, like material tracking and reduction of work-in-progress materials, or 

preventive machine maintenance, management realized that they would need a different 

approach to develop action plans for future improvement activities at the business unit. 

The question was how to aid managers within their sensemaking process in this 

unfamiliar situation to reduce distortions in a team’s decision-making process due to 

subjective and biased decision-making methods of individuals. 

In this paper, a sensemaking support system (S3, S cube) is introduced to help 

management to make sense of a new and not very well understood production system and 

to define proper improvement activities based on Six Sigma and continuous process 

improvement, or Kaizen. A lens model methodology (Castellan, 1972; Cooksey, 1996) is 

used to contrast cause-and-effect relationships between different input variables, or cues, 

and manufacturing throughput time for all weekly production orders. The results of a 

discrete event simulation (DES) model are compared to the results of a judgment analysis 

questionnaire, measuring how the same cues are perceived by management. S3 uses the 
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results of DES to visualize cause-and-effect relationships based on a regression analysis 

to create, label, and categorize cues to determine inputs and transformations. This creation 

and labelling of cues (please note that we use the word ‘cue’ synonymously with the 

inputs of the simulation analysis and the choices given in the judgment tasks) is one 

integral part of the sensemaking framework. We then perform a judgment analysis based 

on a questionnaire to develop a visual representation of the judgments of the management 

team. This facilitates further steps of the sensemaking process, namely the interpretation 

of cues by individual managers and their communication to form a mutually accepted 

action plan. The goal is to make differences and similarities of perceived and measured 

resource-performance linkages visible to the management team and support their 

sensemaking process. 

The following exploratory case study showcases an application of S3 within the 

production system to aid sensemaking and define actions for efficient and effective 

improvement of processes to reduce manufacturing throughput time – a competitive 

priority of the production system. The production system is characterized by high 

complexity, causal ambiguity and a general lack of holistic insight into the system, which 

makes it difficult to identify and assess improvement projects efficiently. A major 

problem of the business unit was that the production system grew at a rapid pace, but 

processes and control systems did not grow alongside to cope with increased dynamics 

and complexity. There was a lack of employee training, missing preventive equipment 

maintenance (TPM), the quality management system needed an upgrade; all while the 

overall value stream had to be improved as well. All major processes had to be analysed, 

improved and aligned with the overall strategy of the unit, but there were not enough 

resources to do it simultaneously. An efficient, effective, and mutually agreeable action 

plan was needed to prevent wrong prioritization, misalignment of different departments 

and misunderstanding between people of different functional areas to improve the most 

important processes to increase manufacturing performance. 

The remainder of this paper is organized as follows. Section 2 gives an overview 

about the literature on continual improvement, sensemaking and the lens model. Section 

3 describes how the lens model can be used facilitate sensemaking when it is unclear 

which actions should be taken to improve specific processes for increased manufacturing 

performance. Section 4 describes the environmental system and the main variables (cues) 

and processes that influence the performance of the production system in terms of 
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throughput time reduction. The simulation model and the judgment analysis are described 

in section 5 and the results and findings are discussed in section 6. 

2. Literature Review 

Continual improvement in manufacturing is still a highly relevant topic (Li, 

Papadopoulos, and Zhang 2016) and many factors are important when making decisions 

regarding improvement projects in organizations. In general, the commitment and active 

participation of management, a long-term plan, and the application of tools and 

techniques are critical for the success of any lean programme (Netland 2016). Careful 

planning of lean and continual improvement actions is highly important because 

misalignment or missing strategies can have a severe impact on the success of a lean 

programme (McLean, Antony and Dahlgaard 2015) and the stress levels of people on the 

shop floor (Stimec and Grima 2019). Knol et al. (2018) found that especially for advanced 

lean enterprises, leadership is a critical success factor when organizations start to manage 

more different improvement projects with increased complexity.  

All this means that management needs a very detailed and precise plan to manage 

several improvement projects in alignment with the company strategy and the support of 

the shop floor levels of the organization. Consequently, if managers find it hard to make 

sense of new situations in a different and less well-known production system, and their 

decisions are not aligned towards a common goal, it becomes very difficult to achieve the 

desired results. Managers often tend to fall back on subjective decision-making methods 

and heuristics which can be detrimental to the overall selection process of improvement 

activities. Kirkham et al. (2014) found in their study that almost 90% of the large 

organisations analysed were almost always successful when solely applying objective 

methods, while less than 70% reported the same results when combining objective and 

subjective methods. The S³ can detect subjective misalignments based on the results of 

objective analyses and improve group decision making by reducing subjectivity and 

biased judgments. 

The S³ provides managers crucial information about their environment and their 

own judgments to aid them in their sensemaking processes when entering new and 

unfamiliar systems. Maitlis (2005, p.64) defines sensemaking as ‘process of social 

construction in which individuals attempt to interpret and explain sets of cues from their 

environments […] sensemaking allows people to deal with uncertainty and ambiguity by 

creating rational accounts of the world that enable action’. Most authors define several 
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steps within the sensemaking process. We use five key activities as summarized by Seidel 

et al. (2018) for our study. Sensemaking starts with chaos (Weick et al. 2005) and a trigger 

event (Weick 1995) characterized by disruptive ambiguity and outcome uncertainty 

which usually leads to a situation when nothing seems to make sense. Maitlis and 

Christianson (2014) define several triggers. First, triggers can be the results of unexpected 

events that disrupt people’s understanding of the world in a significant way for them to 

question their ability to understand the environment in which the event took place, for 

example, the realization that a fire is not behaving as expected. Also, organizational crises 

as a result of significant exogenous forces or questioning of self-identity can act as 

triggers. Furthermore, planned change interventions which are anticipated and planned 

by organizations to change organizational identities and processes can trigger 

sensemaking  

At the second step, people begin to construct intersubjective meaning by noticing 

and bracketing cues which might have caused the trigger event to occur. For example, 

when process improvement activities do not bring the desired results people start 

questioning their understanding of cause-and-effect relationships and begin to look for 

possible input factors and explanations for the failed intervention. Managers in our 

production system expected to use the same, familiar methodologies that always worked 

based on their previous experiences and sooner or later realized that this was not the case 

(trigger event). They needed to look for different inputs and different processes to 

improve and communicate their intentions with their colleagues to find a mutually 

acceptable action plan. This search for different cues is difficult and complex and could 

be improved with a support system to create sense in a planned and guided process. 

The third step in the sensemaking process is the labelling and categorizing of 

newly found cues to form diverging opinions and knowledge for new and ambiguous 

phenomena. Experiences must be labelled and categorized to put them into new 

perspectives. This means that sensemaking is retrospective and experiences are compared 

to previous observations (Weick et al. 2005). A DES can be used to define cues, label 

them, and put them into categories when selecting the input parameters for the simulation 

and regression analysis.  

The fourth step, after the sensemaking has been triggered, cues are identified, and 

labelled, is about presumption and action. People start to anticipate outcomes based on 

latest experiences and cue inputs in this new environment and begin to act in different 

ways to create more inputs. In other words, the actions they take are the inputs for further 
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cue generation, interpretation, and labelling, thus, resulting in a continuous sensemaking 

processes. The DES can be used in this context to create further information to predict 

outcomes, in this case for manufacturing throughput times, in the real environment based 

on the results of the regression analysis. People can then act based on their new 

knowledge and incrementally increase their level of understanding for new phenomena. 

The difference between decision making and sensemaking is that in sensemaking the 

broader conceptual framework in which the decision-making environment is formed. 

Decisions are only part of the process to create cues to further promote future 

sensemaking. 

The final step in the process is about the social aspect of sensemaking and it is 

accomplished through discussions to formulate a common view of new phenomena. This 

includes the knowledge and judgments of all the people involved in the sensemaking 

process and forms an organizational view of things in a new setting. S3 facilitates this 

process by visualizing the cue selection process and judgments of individuals and 

compare them to their peers. It calculates weights for each cue given by the preferences 

of participants of the judgment analysis and serves as the basis of discussion of 

differences and similarities. If a group of people, in this case the management team, can 

find mutually understandable and acceptable outcomes of their combined sensemaking 

processes, decisions can be taken, which ultimately lead to action and the creation of 

further inputs for the sensemaking process. The lens model unites all the previously 

mentioned steps by visualizing the results of the DES based on the identification, labelling 

and categorizing of cues and by providing information about potential outcomes for 

ambiguous situations. It furthermore visualizes the judgments of people to be compared 

with the results of the judgment analyses of all participants to each other and to the results 

of the DES as a basis for communication and action.  

The lens model has been used for various applications to visualize judgments and 

support sensemaking processes of managers for complex judgment tasks or behavioural 

analyses. Dhir (1987) used the lens model to understand consumer behaviour in the 

hospitality industry and found that consumers are not fully aware about their own 

judgments and preferences – for example, due to preference uncertainty and attribute 

conflict (Fischer et al. 2000). The lens model provides a representation of their judgments 

and helps restaurant managers to better understand and adapt to individual customer 

preferences. Other applications are found in healthcare (Thompson et. al. 2005), where 

the lens model is used to analyse decision processes about a patient’s status in critical 
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care, or in education (Haigh et. al. 2013), where it is used to improve judgments about 

teacher’s readiness to teach. It is also used as a judgment capturing tool to give insights 

into production strategy and policies (Ebert et al. 1985). 

The lens model is based on Brunswik’s (1952) work and a tool of social judgment 

theory. The reason why it is preferred over tools from other theories is its strongly 

descriptive approach. It facilitates recommendations solely based on the decision maker’s 

own judgments. Dhir (2001) compared this theory to various other theories (decision 

theory, multi-attribute utility theory, analytic hierarchy process, information integration 

theory, etc.) in a manufacturing setting and concluded that social judgment theory and the 

lens model can be best used to develop judgment and decision aids because of its 

descriptive nature to obtain an unfiltered model of individual judgment processes. Most 

other theories mentioned, on the other hand, are highly prescriptive and indicate how 

rational decision should be made or why they are made which is not the purpose of this 

study. 

3. Integrating the Lens Model into a Continuous Improvement Process 

Figure 1 depicts a typical univariate lens model in a stochastic environment. The distal 

variable or criterion variable Ye is the dependent factor in the environment or ecology to 

be judged by the decision makers. In this paper, it is manufacturing throughput time, or 

the time to produce all weekly production orders for a given product mix, which is 

influenced by independent factors (xk), or cues. The left side of the model depicts the true 

state of the ecological system, or how the distal variable will behave based on the inputs. 

The right side describes how decision makers use the cue information to make judgments 

about the true state of the system. Their judgment Ys is then compared with the true state 

Ye to calculate the correlation between their estimates and the true state, which is called 

response validity, or achievement index, rα = r Ye Ys. This gives an indication about the 

performance of the decision makers and their ability to understand how the criterion will 

behave under different conditions.  
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Figure 1. Univariate Lens Model. 
Source: Authors representation of Cooksey (1996) and Castellan (1992). 

 

In a stochastic environment, however, the true state must be predicted using some 

sort of model. In this research, it is a simulation model based on the processes and value 

stream of the production system. Ŷe is the predicted criterion variable and the 

environmental predictability can be calculated (Re = r Ye Ŷe) with throughput time as the 

dependent variable and the cues as the independent variables. The same process is applied 

on the right side of the lens model to analyse how judges are utilizing different cues with 

the help of a questionnaire. Rs is the consistency of the judge’s cue utilization based on 

different cue input profiles, that is, how coherent is their assessment of cues towards the 

distal variable (Rs = r Ys Ŷs). The correlation between the predicted ecological state and 

the predicted judgments is called the matching index rm = r Ŷe Ŷs, or how similar the 

expected judgments are, compared to the expected environmental state. 

To visualize judgment processes, it is important to calculate the weight of each 

input variable given by the judgments of the management team by using a non-additive 

model of polynomial form (see appendix) as described in Hammond et al. (1975, 281-

282) and Cooksey (1996, 178-180). They use algebraic transformation of the regression 

model and separate weight and function form for each cue to visualize the results of all 

judgments. The method is called ‘range method’ and the results give an indication about 

the preferences of individuals based on their judgments. The highest weight represents 

the highest preference of the judge towards a cue factor with function forms showcasing 

judgments related to higher and lower performance levels, respectively (Figure 2).  This 
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method visualizes how managers are using uncertain and intersubstitutable cue 

information in causally ambiguous situations based on their judgments. The same method 

can be applied to visualize the regression results of the data generated by the DES. 

Weights and function forms are computed for both, the DES, and the judgment analysis, 

and is the foundation of S3 to make decisions regarding the selection of improvement 

activities for different processes. 

 

 

Figure 2. Illustrative Example of Visualizing Weights and Function Forms. 
Source: Authors representation of Dhir (2001). 

 

Previous research has shown that process performance can be significantly 

improved by the adequate use of continuous improvement methods (Hahn et al. 2000). 

However, it also shows that there is no guarantee that any kind of operational excellence 

can be achieved if certain factors are not available to generate the desired outputs 

(McLean, Antony and Dahlgaard 2015). The success of improvement projects depends 

on the experience of team members and their abilities to identify and solve problems 

(Easton and Rosenzweig 2012). Companies are sometimes spending billions of dollars 

for process improvement (Swink and Jacobs 2012) and it is critical to ensure proper 

allocation of scarce and expensive resources. The management of a production system 

needs a holistic understanding about causal relationships between all processes within the 

system to be able to properly identify the most beneficial improvement projects. Too 

many projects without enough capacity increase the risk of failure for all projects and can 

be a reason why Six Sigma or Kaizen do not yield the desired returns (McLean, Antony 

and Dahlgaard 2015). S3, introduced in this paper, is used to guide an improvement 

process to select the most beneficial improvement projects to increase performance based 

on competitive priorities by following a stepwise approach adapted from Dhir (2001).  

 



51 

(1) A trigger event initiates a sensemaking process about a criterion variable which 

is ambiguous in terms of resource-performance linkages, in this case, 

manufacturing throughput time and its influencing factors. 

(2) Define, label, and categorize what factors influence this variable in terms of 

management judgments and for building the model of a system. Different key 

performance indicators (KPIs) and related process improvement options were 

selected as cues to analyse their impact on throughput time within the system. 

All KPIs selected for this analysis could potentially be improved to reduce 

throughput time by initiating an improvement process. However, due to high 

expenses and limited resources, it was necessary to decide and mutually agree 

upon the priority of process improvement options.  

(3) Calculate and visualize weights and function forms (Figure 2) as perceived by 

the management team and based on the results of DES. The questionnaire is used 

to analyse judgments of the management team. The key question was how the 

management team, based on their experiences and knowledge, utilizes KPIs as 

cues within their cognitive systems to make decisions regarding throughput time 

improvements. For the left side of the lens model, DES is used to predict 

throughput time reduction within the production system when different 

processes and KPIs are improved.  

(4) Use the results and analyse how decision makers utilize cues compared to each 

other and to the DES. The results of both analyses, from the environmental 

system and the cognitive systems, are visualized to make both results 

comparable to be discussed within the sensemaking process. The overall weights 

and function forms can be determined for each cue to select the most important 

KPIs and processes for improvement. Also, differences and similarities 

(matching index) can be assessed and discussed to make a mutually acceptable 

decision and to mitigate subjective influences of individuals. 

 

4. System Design and Variables 

4.1. Production System Overview and Value Stream 

The production system consists of three departments that contain all production processes 

from metal disc to final assembly of all core products like doors, side panels, roofs, 

bonnets, and hatches for premium sports cars. The first department is the component 

production, where metal components are pressed, and laser cut out of aluminium or 
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stainless-steel discs. The second department contains all the assembly processes where 

the final assemblies are put together from two to five main-components. The third 

department is called ‘finish’ and it is responsible to ensure proper quality of the final 

product. This department is also the bottleneck of the system based on the results of the 

DES and has the highest utilization rate of all processes. There is also an Operations 

Management department within the small-volume production segment, responsible for 

launching new projects and to ensure continuous smooth operations of all running 

projects throughout their life cycle. In addition to the small-volume batch production 

segment, the business unit contains four other segments, which are: quality management, 

logistics, fixture construction and tool making. Also, many projects are running at the 

same time, like new product implementation into the existing production equipment, 

improvement projects for existing processes, and implementation of new processes, 

which creates a matrix structure of the organization as depicted in Figure 3. 

 

 

Figure 3. Organizational Structure of the Business Unit (BU). 

 

In this complex environment of many interconnected processes and projects, the 

head of the unit must allocate resources properly to all ongoing projects. The key-actors 

and decision makers of the management team, including project managers, are coming 

from the highlighted departments (bold text in Figure 3), and those are the ones who will 

be included in the judgment analysis. Projects can be managed by production ramp-up 

managers for new product implementation, industrial engineering for quality and process 

improvement projects, and production system planners for new process implementation. 

With a lack of control and signalling tools as well as feedback loops, it was critical for 

the top-management of the business unit to rely on mutual understanding, joint decision-
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making and unified actions to reach the unit’s goals based on a collectively developed 

action proposal.   

The production system is simulated from the components supermarket to the 

finished goods inventory. The value stream design, as depicted in Figure 4, is focused on 

ensuring a stable and balanced material flow between each supermarket based on the 

theory of Swift, Even Flow (Schmenner and Swink 1998; Schmenner 2015). This is also 

the basis of the DES and the judgment analysis. 

 

 

Figure 4. Value Stream of the Production System. 

 

4.2. Inputs (Cues), Improvement Options and Performance Levels 

Five KPIs were defined as cues with help of and inputs from the management team. Each 

input is connected to a reaction process to improve KPIs if they are not satisfactory. If so, 

a specific process improvement option is selected to bring the KPI back into the desired 

range by improving the appertaining reaction process. Management could decide where 

to intervene and how much resources should be invested into a process improvement 

option, which results in different performance levels for all reaction processes and 

ultimately different ranges of KPIs. The higher the investments into improvement 

activities for a process, the higher the performance level of the reaction process and the 

better the range for the input variable will be, which, in turn, will influence throughput 

times. Performance levels and expected values of each cue, as depicted in the complete 

list of cues in the appendix, were defined with the current measurements within the 

production system and feedback from management about what was ‘normal’, or what 
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could be achieved for a ‘good/bad’ week. For example, machine down time for the 

average level was defined by log files coming from the maintenance department. The 

upper and lower values for all the other levels were then defined by the management team 

and cross-checked with past log files. The following is a list of the five KPIs to be 

considered in the lens model analysis with their specific reaction processes and 

performance levels.  

Cue 1: Processing Time Variability and Training (Level 1-7): Processing time 

variability based on varying worker performance for manual tasks was the first KPI to be 

considered in the analysis and was selected by the production department of the 

production system. Workers were not fully trained for all manufacturing processes 

according to the defined standards, did not have the required qualification profiles, and 

lacked understanding of basic process improvement methods. Therefore, the project team 

concluded that a reaction process called ‘training’ would be the most appropriate to 

improve this KPI as learning and training is a major tool to reduce process variability 

(Zantek et al. 2002). Training only influences processes with a significant amount of 

manual operations, which can be found in the assembly systems and the finish department 

marked with ‘PT’ in Figure 4. The range of the KPI is determined by the distribution of 

tact times for the completion of one product and is dependent on the performance level 

of the training process. The higher the performance level of the training process, the lower 

the dispersion (or spread) and the overall completion time of manual tasks will be until 

they reach the defined, standardized processing times with high reliability.  

Cue 2: Mean Time Before Failure (MTBF), Mean Time To Repair (MTTR) and 

Total Productive Maintenance (TPM) (Level 1-7): Machine processing times at the 

assembly systems and curing furnaces cannot deviate much, but machines can have 

unplanned downtime, therefore, MTBF and MTTR can be defined as another set of 

indicators (again required by the production department to be included in the analysis). 

The underlying concept of those measures is total productive maintenance (TPM), 

introduced by Nakajima (1988), which is used as the reaction process for the MTBF and 

MTTR indicators. The right maintenance policy is critical to maintain high levels of 

availability and performance at an optimal cost level and has become a significant profit 

contributor in modern production systems (Faccio et al. 2014). Again, high performance 

levels of the TPM reaction process tend to improve related KPIs and has an impact on 

overall throughput times of the system.  
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Cue 3: Scrap, Rework Rates and Problem Solving (Level 1-7): If product quality is 

not within the given range, a problem-solving process is triggered to deal with quality 

problems. Scrap and rework mostly result from changing part quality discovered at the 

quality measurement, rework, and finish departments (see ‘S&R’ marks in Figure 4). A 

problem-solving team of experts and engineers is needed to improve the quality of 

products and processes. A high-performance level can only be achieved with enough 

investments into quality analysis and improvement to deal with complex problems. It is 

then possible to sustainably and efficiently reduce scrap and rework rates and ultimately 

improve throughput rates and throughput times (Johnson 2003) with a sophisticated 

problem-solving process. This process was selected by the quality department of the 

production system and all KPIs were critical for the managers of this department. 

Cue 4: Production Mix, Sequence and Master Production Scheduling (Level 1-4): 

Master production scheduling (MPS) based on the manufacturing planning and control 

framework by Vollmann et al. (2004) is the process for the fourth input: production mix 

and sequence, as requested by the logistics department. It aims to create an assembly 

schedule to achieve an optimal product mix and sequence for the assembly stations to 

ensure proper replenishment and inventory levels at the finish buffer. Based on Jonsson 

and Ivert (2015), the balancing between capacity and demand is used to define 

performance levels for the MPS. A very low performance level of the MPS process means 

that the production sequence and mix are completely random and unbalanced, which 

results in long throughput times. No demand or capacity restrictions are considered at this 

level and the production plan is not capable of balancing both factors due to a sub-optimal 

MPS. The basic production plans for all higher levels of this reaction process, from levels 

two to four, is based on an optimized MPS considering capacity, demand, sequence, and 

product mix issues. Nevertheless, as analyses within the production system have shown, 

there were up to ten deviations per week from the production plans due to planning errors, 

from a total of 25 production orders every week. The performance levels of the MPS 

process are therefore based on the number of deviations of the production plan compared 

to the optimized plan to analyse the effect of bad planning on average throughput time. 

This means that for a level four process, there is no deviation from the optimized MPS. 

The lower levels were then simulated by changing the sequence of the production plan 

for up to ten production orders to deviate from the optimal MPS based on real examples 

experienced at the production system. Planning errors due to low performance levels are 

introduced artificially and randomly to simulate different levels of planning performance.  
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Cue 5: Bottleneck Utilization and Business Process Optimization (Level 1-4): The 

fifth cue is the bottleneck’s processing time compared to the processing time of the second 

slowest process, or, the difference of utilization levels of the two processing units with 

the highest utilizations (Hopp 2011). Business process optimization of the bottleneck was 

used as a reaction process to achieve balanced and improved flows of materials as 

requested by the operations management department. Sophisticated process optimization 

will accurately analyse potential bottlenecks and ensure a balanced production based on 

the concepts of Drum, Buffer, and Rope (Goldratt and Fox 1986) or the theory of Swift, 

Even Flow (Schmenner and Swink 1998; Schmenner 2015). With low performance 

levels, processing times and utilization levels will vary, causing the whole production 

system to suffer from unbalanced process design due to a lack of focus on the bottleneck. 

The finish department was identified to be the bottleneck process under normal 

circumstances with an average utilization of over 80%. The process with the second-

highest utilization was the curing furnace with only about 60% of utilization for all 

weekly production orders, given the product mix used for the DES. Shift models, worker 

cross-training, dedicated machines for special product families, or different routing 

options can help to balance the throughput time for each process as shown in Johnson 

(2003). A mix of worker cross-training with more finish stations, an increase in capacity, 

as well as improvements in processing times were used to optimize the bottleneck process 

towards utilization rates like those of the curing process.  

Each of the main inputs of the model has an impact on the overall throughput time 

of the production system in terms of supply chain management (Hopp 2011), 

manufacturing throughput times (Johnson 2003), or other capacity, variability and 

inventory trade-offs within process management (Klassen and Manor 2007). Therefore, 

these five KPIs are used as input factors (cues) for the lens model application as depicted 

in Figure 1. Filho and Uzsoy (2014) use a similar set of input variables for their simulation 

analysis of cycle time in a flow shop. The reduction of variation due to quality, quantity 

and timing is also a critical factor in the theory of Swift, Even Flow (Schmenner 2015), 

with the other factor being throughput time.  

5. Simulation Model and Judgment Analysis 

Each cue of the lens model is divided into certain performance levels on an ordinal scale 

representing different ranges of values for each KPI. Different scenarios of production 

system configurations were created to obtain the input data for the questionnaire and the 
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DES. This was done by randomly assigning performance levels to each cue, based on 

viable and concerted ranges, to create different production system profiles with varying 

strengths and weaknesses based on the cues with higher or lower performance levels, 

respectively. 20 input profiles were created randomly to simulate trade-offs and present 

them to the management team for the judgment analysis. The set of profiles was checked 

for plausibility, variety of profiles, and orthogonality. Where necessary new profiles were 

created randomly to replace unsatisfactory ones. At the end, the Pearson product-moment 

correlation coefficient was used to calculate the correlation between all pairs of factors to 

test for orthogonality of the input profiles. The highest correlation was found at r = -0.368 

between factors three and four. The t-value for the highest correlated pair was 1.677, 

which lies under the critical t-value of 1.734 at 0.1 level of significance for 18 degrees of 

freedom. This means that there is no significant correlation between all pairs, thus making 

the profiles orthogonal. All scenarios (input profiles) were simulated for 25 runs to obtain 

a data set for throughput times from the DES. Management was asked to rate the same 

profiles in the questionnaire to obtain their judgments for the same scenarios and the cues 

they mostly utilized to make their decisions.  

 

Table 1. List of Participants and Functions (*Top Decision Makers). 

The judgment analysis was conducted to develop a pictorial representation of the 

expert’s mental models to be compared with the results of the simulation model. The 

judges are members of the management team, from production and logistics department, 

but also production system planners, process engineers and other members of the business 

unit with in-depth knowledge of the production system, who decide on how to run the 

system in terms of improved throughput times. 17 experts were identified, who were 

qualified to participate in the survey – of whom twelve completed the questionnaire under 

the guidance of the authors. Five people were considered as the top decision makers with 

Group Code Name Function Age Exp.
1

In BU Edu.
2

TOPMGR1 Top-Manag. 1* Head of BU 45-50 2 - 4 2 - 4 Eng. + IE

NPIMGR1 New Proc. Implement. Manag. 1* Project Head 55 + 12 + 2 - 4 Eng.

NPIMGR2 New Proc. Implement. Manag. 2 Project Supervisor 30-35 4 - 6 6 - 8 Eng.

PROMGR1 Production Manag. 1 Head of Production 40-45 4 - 6 < 2 Eng.

PROMGR2 Production Manag. 2* Head of Production 40-45 < 2 8 - 10 Eng.

PROMGR3 Production Manag. 3 Line Manager 45-50 10 - 12 2 - 4 Eng.

LOGMGR1 Logistics Manag. 1* Head of Logistics 40-45 2 - 4 2 - 4 Business

LOGMGR2 Logistics Manag. 2 Line Manager 35-40 < 2 4 - 6 Logistics

LOGMGR3 Logistics Manag. 3 Project Supervisor 25-30 < 2 2 - 4 Logistics

QUAMGR1 Quality Manag. 1 Line Manager 35-40 < 2 2 - 4 Eng.

PRIMGR1 Proc. Improv. Manag. 1 Project Supervisor 30-35 4 - 6 4 - 6 IE

PRIMGR2 Proc. Improv. Manag. 2 Project Supervisor 35-40 2 - 4 < 2 IE
1 
Work experience (number of years in current funcion and level)

2 
All with masters degrees in Engineering (Eng.), Industrial Engineering (IE), Business or Logistics

Group 1

Top-Management & 

Innovation

Group 2

Production 

Management

Group 3

Logistics 

Management

Group 4

Quality 

Improvement
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the highest level of involvement in making decisions, of whom four responded to the 

questionnaire (asterisk in Table 1). Consequently, we are confident that all relevant 

characteristics of the problem domain were captured. 

Each expert received the same questionnaire with the set of 20 different input 

profiles and was asked to rate each profile and its expected performance regarding 

throughput times from a scale from 1 to 20, with 1 meaning that the expert is estimating 

very long (bad) throughout times and 20 meaning that the expert is estimating a 

significant reduction of throughput times. Each profile was presented to the participants 

in form of a ‘profile card’ (Table 2), so they could rearrange the cards and have a better 

overview over the whole set of profiles. 20 profiles represented the upper limit 

participants could handle in terms of complexity and time to complete the questionnaire, 

so this number was selected by the authors.  The most important information on the cards 

were the different performance levels for each process and KPI. The ranges and an 

additional description were also visible, and the list of all ranges was given to the 

participants as well (appendix). Before the actual rating of the input profiles, an a priori 

assessment was conducted, and the participant could assign a total of 100 points to each 

of the five processes to represent their preferences before the actual judgment analysis. 

The comparison of the a priori assessment with the actual judgment analysis gives an 

indication about the consistency of the judges and the difference between a simple 

assessment and a causally ambiguous judgment task. 

 

 

Table 2. Input Profile with Judgment yij in Form of a ‘Profile Card’. 
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The weights and function form, as judged by each member of the management 

team, could be calculated based on the ratings of each profile and the regression model. 

Performance levels for each cue were the independent variables and profile ratings the 

dependent. The results gave a visual representation of the cognitive system of the judges 

and the mutual preference of the management team to be compared with the results of the 

DES. The DES was modelled after the value stream design of the production system with 

all process steps, master product data (bill of materials) and routing based on Figure 4, 

using the Tecnomatix Plant Simulation software by Siemens. All input profiles were 

modelled, and 25 simulation runs were executed for each profile to acquire a large enough 

sample size for the regression analysis to calculate weights and function forms for the 

environmental system. The average throughput time over the whole product mix was the 

output of the simulation and the dependent variable of the regression analysis to assess 

the impact of performance level changes of each cue on throughput time. All input 

profiles could be simulated by changing the levels of each parameter in the simulation, 

for example, processing time variability, unplanned machine down time, and various 

production schedules. The production at the assembly stations was simulated based on 

the assembly schedule with the previously defined ranges for processing times. A 

specially coded logic in Tecnomatix Plant Simulation for the repacking stations and the 

curing furnace was applied to simulate the selection of the next batch to be cured at the 

furnaces based on the arrival from the FIFO-lines and the availability of curing fixtures. 

Scrap and rework rates were applied before and after the finish stations and at the rework 

station. A higher quantity of products had to be produced to compensate for quality losses 

affecting the overall manufacturing throughput times of the system. Twelve finish stations 

were simulated individually based on the finish schedule taking parts from the finish 

buffer with an initial starting level of WIP materials. Machine down breaks were also 

simulated randomly based on the probability of a break down and the average duration. 

A TPM break in the middle of the week was set to simulate TPM times defined by the 

performance levels of the TPM cue.  

The results were validated by comparison with real-life data and by following 

each part through the value stream as modelled in the simulation. Furthermore, the 

simulation was used to plan and validate processes of the real shop floor of the production 

system in a different project. Other outputs of the simulation were the log files of each 

process, which product type was processed when and where, and the number of 
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parts/containers coming into each station and out of it. The functioning of the simulation 

model could be validated with the help of the log files and the real-life data.  

The cue performance levels for each cue as independent variables and the average 

throughput time as dependent variable were then used as input data to conduct curvilinear 

regression analysis for testing the fit of the regression model of throughput time. To 

compare the results of each profile, the production system was simulated for one week of 

production (seven days) without a warm-up period to better reflect the changes of the 

dependent variable for each profile. The regression model captured the dependence of the 

output variable with a relatively high degree of accuracy, with an adjusted R-square of 

.935 (see appendix for more details), with most of the input variables being significant at 

the 0.01 level. The regression model of the DES was visualized in the same way than the 

regression models for each judge based on the results of the questionnaire to obtain 

weights and function forms of all cues and to compare both sides of the lens model. 

6. Comparing the Results on both Sides of the Lens Model 

6.1. Judgment Analysis - Weights, Function Form and Causal Relationship  

The judgment analysis was performed to explore judgment patterns and subjective 

preferences of each team member based on their knowledge and experience. The 

management team was divided into four functional groups: (1) Top-management and 

process innovators, (2) production management, (3) logistics management, (4) quality 

improvement, with each group containing three members. 

The first group included the head of the business unit (TOPMGR1) and the two 

most important project managers (NPIMGR1/2), responsible to manage the re-

engineering and implementation of all new processes. Two of the top decision makers are 

based in this group and both were foreign expats; appointed and sent to the business unit 

by the headquarters of the corporation – the top-manager for a longer period and the 

project manager for the duration of the project. Both had been working at the business 

unit for more than two years when the judgment analysis was conducted. The second 

group consisted of the former head of production (PROMGR1), with a lot of experience 

coming from the foreign headquarters as well; and the current head of production 

(PROMGR2), who was relatively new at this position, but also a top decision maker and 

a local manager within the business unit for a long time. Together with a third production 

line manager, this group was responsible for the training, TPM and scrap and rework 

KPIs, as well as the overall functioning the production system. The third group consisted 
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of two logistics managers with LOGMGR1 being the head of the logistics department and 

the only local female top decision maker of the management team. These two were the 

only managers from the same group with relatively similar judgments and were 

responsible for the production planning and training processes. The last group included a 

quality manager and two process improvement coordinators responsible for improving 

product and process quality. This group had no top decision maker, but all members were 

heavily involved in defining and implementing improvement projects with a focus on 

scrap and rework, bottleneck improvement and training.  

The weights and function forms were computed based on the judgments of each 

manager as depicted in Figures 5a-d. The results within the groups indicate that there was 

a general lack of agreement within each group and within the whole team. Only a few 

pairs of managers had similar judgments and they came from different functional areas 

and different groups. The results also indicate that the participants relied on different cues 

for their judgments. It was not possible for the management team to identify a single most 

important cue for throughput time of the production system due to linkage ambiguity 

within the systems and within their judgments. Although all participants were 

experienced managers, familiar with the production system, and routinely made decisions 

regarding improvement activities, there was a general lack of agreement and common 

understanding. Many managers were biased towards the process which is most critical in 

their functional role, for example, scrap and rework for the quality manager – 

QUAMGR1.  

 

Figure 5a. Weights and Function Forms of Group 1, Top-Management, and Innovators. 
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A lack of focus on specific cues made it very difficult to rate profiles consistently 

based on the a priori assessment, which resulted in substantial differences between the 

weights of the a priori results and the actual judgment analysis. Those, who clearly 

prioritized one or two cues, generally could achieve higher consistency with their a priori 

assessment, because they only focused on specific cues when rating the profiles which 

made it easier to cope with the complexity of the judgment task. One reason for high 

variance was, most likely, the absence of a clear and holistic manufacturing policy to 

align decision making of all managers. This also resulted in judgment errors for some 

managers and they misjudged some profiles which caused high deviations from their a 

priori assessment; see LOGMGR2 for the TPM cue, for example. Misjudgements, or 

overlooking of alternatives can always happen in complex judgment and decision tasks 

and this method can detect, and point towards them, to re-evaluate some alternatives. 

 

Figure 5b. Weights and Function Forms of Group 2, Production Management. 

Function forms also play an important role in the judgment analysis as they depict 

the changes of perception of managers for different cue levels. It is important to note, 

however, that the function form should always be considered in relation to the weight 

because of the characteristics of the range method. The range method always calculates 

the graph between the minimum and maximum judgments over the whole range of cues 

and the weights are separated from the function form. A function form of a cue with a 

lower weight should not be emphasized as much as one with a higher weight because of 

the higher impact of the latter. Some of the function forms are strictly negative linear, 

which could mean that the participant thought of that cue as highly negative for 
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throughput time, for example the MPS cue for LOGMGR3. The reason for that is that the 

manager completely disregarded this specific cue in favour of other inputs, which resulted 

in a very low weight of .02 for the MPS process. Other managers, however, also had 

negative function forms with high weights for some cues, which means that they truly 

had a negative perception about specific cues in terms of throughput time reduction.   

 

Figure 5c. Weights and Function Forms of Group 3, Logistics Management. 

 

Figure 5d. Weights and Function Forms of Group 4, Quality Improvement. 

Table 3 summarizes all results for the whole management team. This showcases 

the general lack of consensus among the management team with no clear priorities among 
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the variables as every manager chooses to rely on different cues. The aggregate group 

preference lies in the MPS process with only a minor lead over the training process and 

bottleneck optimization for the judgment analysis. The team seems to agree only on the 

TPM process to be the least relevant process for throughput time, which is somehow 

counter-intuitive. The only explanation by the authors is that TPM is the least appealing 

and intuitive process among all cues so the participants sub-consciously devalued the 

impact of this input on throughput time. The equipment was also relatively new, which 

led to assumptions that there would not be as much unplanned downtime as initially 

simulated. In the a priori assessment it came in last in terms of relative weights as well, 

but not by the same margin as was the case in the judgment analysis and there were 

outliers in both assessments. Scrap and rework had a relatively low weight as well, 

because of the nature of the small-volume batch production system, characterized by a 

low quantity of high-value products being produced. In this case, the influence of scrap 

and rework is higher on quality costs than on throughput times which is intuitive and was 

also reflected in the judgments of the management team.  

 

 

Table 3. Judgment Analysis for the Management Team (*Top Decision Makers). 

The results in this analysis are consistent with the findings of Dhir (2001), where 

participants had substantial differences in their initial judgments, however, they could at 

least agree upon the two most important factors with a significant margin in a 

deterministic judgment problem. In our study, however, managers even within the same 

area had substantial differences in their judgments and a high degree of linkage ambiguity 

can be observed, even within a relatively homogeneous group.   
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6.2. Simulation - Weights, Function Form and Causal Relationship  

The weight and function forms for the simulation analysis were computed in the same 

way as the results of the judgment analysis. All profiles were rated based on the averages 

of throughput times from 25 simulation runs with the best profile getting 20 points and 

the worst one point. The ratings were then used like the results of an additional judge in 

the judgment analysis, and function forms and weights were calculated accordingly. 

Figure 6 shows the results of the ‘quasi judgment analysis’ based on the simulation results 

to create a picture for the left side of the lens model. 

 

 

Figure 6. Weights and Function Forms Based on Simulation Results. 

The simulation results decisively showcased the impact of the variables on 

throughput time for the environmental system on the left side of the lens model. Employee 

training was the most important factor for throughput time improvements because of the 

wide range of the input variable (see appendix). In the worst case, workers performed 

manual processes with only half the speed compared to the defined standards, while in 

the best case they could even improve on old standardized processing times with 

decentralized improvement on the operative level. This spread was a clear indication that 

employee training was critical for fast and stable processing of production orders, 

especially, because the modifier also affected bottleneck processing times at the finish 

department which is 100% manual and relies heavily on training. A unit-wide training 

program was the most promising decision to enable employees to improve their processes 

autonomously with good knowledge in standardized work and improvement methods. 

The second-most important process according to the simulation analysis was TPM 

to reduce unplanned machine downtime and further decrease the variability on the shop 

floor. This process only affected automated process of the assembly systems and furnaces 

with relatively lower capacity utilization levels compared to the finish department. 

However, long downtime significantly affected the proper flow of products through the 

value stream and, at a certain level, the upstream processes could not supply the finish 
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department efficiently. At low levels of the TPM process, the bottleneck shifted to the 

furnace process because the TPM modifier for automated processes did not affect the 

finish department. Machine breakdown occurred randomly and with varying impact on 

the system based on the current state of production and the duration of the downtime 

period. Manufacturing planning and control with the development of an improved MPS 

to optimize the sequence and flow of parts through the system had almost no effect on 

throughput times due to high WIP inventory which decreased the sensitivity of the system 

to a varying product mix and sequence. It was far more important to produce each order 

effectively than to plan and optimize the sequence of orders due to high variability in 

other processes. The least important process was bottleneck optimization because it was 

also overshadowed by other processes with higher variability.  

Furthermore, improvements at the finish department became meaningless when 

the bottleneck shifted to the furnace process due to a bad TPM process, which affected 

only furnace, but not the finish department. High unplanned downtime reduced protective 

capacity at the non-bottleneck workstations and caused increased bottleneck shiftiness, 

which confirms the finding of Craighead et al. (2001) that bottleneck shiftiness can be 

reduced by placing more protective capacity before and after the bottleneck. This 

questions the TOC (Goldratt and Fox 1986) that a continuous improvement process 

should always focus on the bottleneck, and improvement of non-bottleneck resources is 

wasted, which is also supported by Filho and Uszoy (2014). They find that smaller 

improvements at all workstations had almost the same effect on cycle time as a large 

improvement activity at the bottleneck workstation, which is confirmed by our analysis. 

6.3. Comparison of Results and Development of an Action Proposal 

Both sides of the lens model have been analysed and visualized in the same way and can 

now be compared to find sources of agreement and disagreement for better 

communication within the sensemaking process. The ladder graph of Figure 7 shows the 

weights for all factors as calculated for the simulation analysis and the judgment analysis 

of the management team. The indifference of the management team can be seen on the 

right side and they could not mutually agree on a single-most important cue with a 

significant margin. The simulation on the other hand generated clear results to focus on a 

specific factor with the highest potential for improvement of throughput time and 

therefore, the average matching index was relatively low.  
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Figure 7. Comparison of Weights between Simulation and Judgment Analysis. 

The training process was a clear winner for the simulation analysis and the 

management team agreed at least to some extent by giving this factor the second-highest 

weight, despite the large absolute difference in weights between both sides of the lens 

model. Scrap and rework were relatively even on both sides of the lens model but ranked 

differently. MPS and bottleneck processes did not influence the dependent variable as 

much due to the aforementioned reasons, however, the management team had them 

ranked in the top group of subjectively more relevant processes. While there might be 

various reasons for disagreement – attribute conflict and preference uncertainty (Fischer 

et al. 2000) for example – it shows that no clear causal relationship can be identified 

among the management team for the environmental system and only a few managers had 

some agreement with the simulation results as seen in Figure 8. The graph shows the 

weights for each factor for the three closest managers compared to the simulation; all 

three managers overvalued the bottleneck factor to the detriment of TPM. The goal of the 

lens model is to unfold these differences and make them visible for the management team 

to improve their group decision making. 
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Figure 8. Highest Agreement based on Matching Index and Weights. 

The differences in the weights for the TPM process were the most interesting, 

because they accurately reflected the real dynamics within the production system as 

observed by the authors. Only one participant, namely PROMGR1, weighted this factor 

above 0.2 in the judgment analysis, who was indeed the one who tried to initiate an 

improvement project for the TPM process during this research project. This process 

improvement activity, however, was never implemented due to a lack of support of the 

other managers and there was no mutually acceptable action proposal. 

Action proposals support a causal link between a course of action and its 

consequences and can be used to justify how certain solutions, based on theoretical 

research and models, lead to an anticipated and desired outcome on the process-level of 

a production system (White 2016). Friend and (2005) point out that OM interventions and 

models rarely solve organizational problems directly and if they were to be relevant and 

useful for practitioners, they need to be embedded in action proposals, or commitment 

packages. This method can be used in combination with the lens model methodology 

because action is an integral part of the sensemaking framework (Weick et al. 2005). 

A commitment package, as developed by Friend and Hickling (2005), is an action 

proposal that defines a set of immediate actions and future decisions to achieve 

incremental progress in a continuous planning process. It defines what actions must be 

taken immediately, or if more exploration is necessary based on time and uncertainty of 

the decision areas. This means that some decisions should only be made if uncertainty is 
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below a certain level and if there is not enough time for further explorations. It also leaves 

future decision space for deferred choices and contingency planning if there is still enough 

time to analyse further choices or to reduce uncertainty by doing more research, as 

depicted in Table 4. Note, that this is only one isolated concept out of the whole 

framework to assist decision makers in a continuous planning process but is an excellent 

tool to summarize the results of the lens model. It can also be used synergistically with 

continuous improvement cycles based on Six Sigma or Lean and is designed to work in 

environments with high uncertainty and causal ambiguity where judgments are needed 

for decision making. 

 

 

Table 4. Commitment Package, or Action Proposal based on the Lens Model Results. 
Source: Authors representation of Friend and Hickling (2005). 

 

An immediate action that should be taken based on this study is to initiate a 

training program to improve manual processes and to reduce processing variability 

caused by assembly and finish workers. Stable and improved processing times had to be 

the number one priority of the business unit, however three of the four top decision 

makers (Table 3) viewed it not as a top priority according to the weights given in the 

judgment analysis. The lens model made these deviations transparent and specific 

managers could adjust their cognitive system by progressing in their sensemaking 

processes to adapt cue utilization for this specific problem. It is fair to assume that these 

misconceptions of key decision makers within the production system prevented actions 
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to improve this critical input. With the help of the information generated by the lens model 

specific people could be convinced and the action was finally implemented through an 

extensive production preparation process where all manual processes were trained, 

improved, and standardized. This continuous improvement cycle was the new main 

priority for the unit and a clear focus for resource allocation. Allocation of resources into 

improvement of TPM and master production scheduling, on the other hand, was deferred 

and required further investigation, data collection and analysis. Those were the two 

processes where the management team deviated from the DES and at least one side valued 

it as a top-priority and the other mostly neglected it. This makes both processes good 

candidates for further explorations and differed choices in Table 4, as it is obvious that 

no consensual decision could be made based on the lens model analysis. In this case the 

continuous improvement cycle starts again with a ‘plan’ or ‘define’ stage in a future 

period and no resources should be deployed without a clear understanding about the 

potential benefits of those processes.  

No resources were assigned to bottleneck optimization since it was the lowest 

ranked in the top group for the management team and the lowest overall in the DES. The 

quality solving process to reduce scrap and rework was also not a priority in terms of 

throughput time. Resources were allocated accordingly, with the majority going into the 

execution of immediate actions, and the rest could be invested into further analysis of 

other important factors that required more information. This ensured efficient and 

effective selection of improvement projects based on measurable indicators and 

management judgments. Relying on one source would potentially have led to a different 

allocation of resources without an exact classification of actions for each decision area.  

Management generally trusted the results of the simulation analysis and accepted 

the action plan after pointing out the differences between the DES and their judgment 

analysis. They were involved right from the beginning of the analysis and the creation of 

the DES and could easily interpret the results of the judgment analysis to adjust their 

mental model. This way we could minimize subjective influences based on objective 

results and create a mutually acceptable action proposal.  

7. Conclusion and Future Research Directions 

There are many reasons why managers cannot or do not want to understand objective 

quantitative analyses. For example, complexity can create a gap between the model 

builder’s insights and a manager’s understanding of its results, as explained by Dhir 

(2001). Another point is that people are not particularly good at explaining the reasoning 
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behind their judgments, which prevents effective communication and understanding 

between individuals. Dietvorst et al. (2015) found algorithm aversion, or a lack of trust 

into results of quantitative analyses if people have had bad experiences in the past. All 

these factors influence managers to still rely on their own subjective methods because 

they believe to already know the most important factor for improvement (Kirkham et al. 

2014). The lens model confronts managers with their biases which is why it is so 

important that the analysis from the lens model method is purely descriptive to analyse 

factors deep within an individual’s cognitive system. 

The S3 developed in this paper is not focused on decision-making based on precise 

mathematical calculations, but rather serves as a sensemaking tool to bring the 

management team closer together and empower them to define mutually acceptable 

actions to move forward and improve the production system. After a trigger event, a 

criterion variable (e.g. manufacturing throughput time, or behaviour of wildfires in certain 

terrains) is defined to be the centre point of the sensemaking process and the lens model 

analysis. The DES helps to define, label, and categorize inputs and generate insights into 

potential future states of the system and form presumption about the environment. Then 

the judgement analysis visualizes cognitive patterns of the management team and their 

preferences for cue utilization and rankings as a basis for communication. We exposed 

differences and similarities as a basis for communication and discussion to bring the 

management team closer together and facilitate exchange of ideas and knowledge. The 

action plan generated by combining both analyses is the foundation for future steps to 

create even more sense when the sensemaking process is repeated. In this ongoing process 

of sensemaking, action generates more inputs that can be included in future lens model 

analyses. That way knowledge and understanding can be continuously increased to make 

more sense of complex processes within the production system. More cycles in the 

sensemaking process are necessary to define, label and categorize different, and 

potentially better, cues and use the results of previous communication to integrate them 

into better models and create better action plans as the sensemaking process goes on, 

which is the goal for future research.  

This method is valuable even for production systems without extensive data 

collection and can be easily implemented. Various other objective methods, for example 

pareto analysis, structural equation modelling, etc., can be used on the left side of the lens 

model to predict the true state of a system and can be compared with the judgment 

analysis on the right side to yield the same results. Future research can implement this 
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method to test results of objective scientific methods and bring them into closer relation 

to the judgments of managers affected by this analysis. Another crucial part, left for future 

research, would be to test the effects of the cognitive analysis with the lens model 

methodology in comparison to just a ‘regular’ scientific intervention. This would 

empirically strengthen many ideas of behavioural OM/OR and the benefits of including 

the human factor in applied research in our field. In a broader sense, if we put academics 

fighting for rigor on one side and the practitioners living in the world of relevance on the 

other, our paper is an attempt to bridge the gap between the two groups. We hope that it 

will be followed by many.  

The lens model methodology includes managers into the sensemaking process and 

valuable insights can be gathered by making all judgments available to top management. 

This was also observed by King and Zeithaml (2001) who reported a high interest of top-

managers regarding the perception of their colleagues and middle managers about 

resource-performance linkages, which was also the case in this research because 

managers want to understand what their colleagues think. They found that the transfer 

and collaborative exploitation of resources could lead to increased firm performance; this 

is why this research aims to make this information available for the management team to 

improve mutual understanding. It shows that integrated information from the DES and 

the judgments of management can be used to create holistic and accepted action proposals 

to increase the relevance of OM interventions for practical applications. Samson and 

Whybark (1998) and Vastag (2000) emphasize focusing on soft issues and organizational 

capabilities to outperform competitors due to better decision making and usage of 

manufacturing inputs, investments, and choices. The sensemaking framework is one way 

to improve decision making within the production system and to help management acting 

in an organized, coherent way. 

Kirkham et al. (2014) provide an excellent literature review of improvement 

project prioritization and conclude that limited empirical research has been conducted to 

understand improvement project selection processes. They find that objective 

prioritization methods, especially in a Six Sigma context, generally lead to better results, 

compared to subjective ones. We try to analyse and combine both methods to help to fill 

the gap in the literature and to create a deeper understanding of managerial sensemaking 

processes and the prioritization of improvement projects. A lot of research has been 

conducted on the best way to improve a production system, Goldratt and Fox (1986), or 

Ferdows and De Meyer (1990), to name just two, but ultimately it depends on the 
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judgment and the alignment of the decision makers to go in the same direction and work 

together to achieve common goals of the production system. Production systems, supply 

chains or service providers are, after all, complex social systems, where behaviour of 

individuals, groups, or whole organizations is the central driver of operations and 

performance (Gino and Pisano 2008). 
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Appendix 

Appendix 1: Calculations of weights and function form of the lens model analysis. 

The computations below were developed by, and are adapted from, Hammond et al., 

(1975), with typographical errors removed. To visualize the judgment processes, it is 

important to calculate the weight of each input variable based on the judgments of each 

individual by using a non-additive model of polynomial form, as seen in equation 1.  

Equation (1): 

𝑦𝑖𝑗 = ∑(𝑏𝑖𝑘 ∗ 𝑥𝑗𝑘 + 𝑏𝑖(𝑘+𝑚) ∗ 𝑥𝑗𝑘
2 ) + 𝑐𝑖

𝑚

𝑘=1

+ 𝑒𝑖𝑗 

where:  

yij = judgment of the individual i for an input profile j (profiles with different values for 

cues to be ranked by an individual),  

m = number of input factors, bik is the raw score regression weight for individual i on 

factor k's linear term,  

bi (k+m) = regression weight for individual i on the quadratic term of factor k,  

xjk = value of input factor k on profile j,  

ci = constant term for individual i for input profile j.  

In this equation, the function form and weight for each cue are not available and 

must be separated using the following transformation found in Hammond et al. (1975). 

They define fk(xjk) as a function of xjk: 

𝑓𝑘(𝑥𝑗𝑘) = (𝑏𝑖𝑘  ∗  𝑥𝑗𝑘 + 𝑏𝑖 (𝑘+𝑚) ∗  𝑥𝑗𝑘
2 )   

They further define: 

𝑔𝑘 =
𝑦𝑚𝑎𝑥 −  𝑦𝑚𝑖𝑛

𝑓𝑘 𝑚𝑎𝑥 − 𝑓𝑘 𝑚𝑖𝑛
 

and:  

ℎ𝑘 =  𝑦𝑚𝑖𝑛 −  𝑔𝑘  ∗  𝑓𝑘 𝑚𝑖𝑛 

fkmax is the maximum value of fk over the range of factor k, fkmin is the minimum value, 

ymax is the maximum value of judgment allowed, and ymin is the minimum value. A new 

function that ranges from ymin to ymax, can now be defined.  

Equation (2): 

𝐹𝑘(𝑥𝑗𝑘) =  𝑔𝑘 ∗  𝑓𝑘(𝑥𝑗𝑘) +  ℎ𝑘 
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By modifying the equation and substituting for fk(xjk) in equation 1 we get: 

𝑓𝑘(𝑥𝑗𝑘) =
(𝐹𝑘(𝑥𝑗𝑘) −  ℎ𝑘)

𝑔𝑘
 

 

𝑦𝑖𝑗 = ∑
(𝐹𝑘(𝑥𝑗𝑘) −  ℎ𝑘)

𝑔𝑘

𝑚

𝑘=1

+ 𝑐𝑖 + 𝑒𝑖𝑗 

or, 

𝑦𝑖𝑗 = ∑
𝐹𝑘(𝑥𝑗𝑘)

𝑔𝑘

𝑚

𝑘=1

−  ∑
ℎ𝑘

𝑔𝑘

𝑚

𝑘=1

+  𝑐𝑖 +  𝑒𝑖𝑗  

or, equation (3): 

𝑦𝑖𝑗 = ∑ 𝑤𝑘

𝑚

𝑘=1

 ∗  𝐹𝑘(𝑥𝑗𝑘) + 𝐶𝑖 +  𝑒𝑖𝑗 

where: 

𝑤𝑘 =
1

𝑔𝑘
 

and: 

𝐶𝑖 = 𝑐𝑖 − ∑
ℎ𝑘

𝑔𝑘

𝑚

𝑘=1

 

The ranges for all input factors k must be known to use this method and the 

cue weights as well as the function forms are calculated over the range of 

judgments (ymin - ymax), based on gk. This method is called “range method” and it 

separates the weights wk in Equation 3 from the function form Fk(xjk) in Equation 2. 

The results give an indication about the preferences of the individuals based on 

their judgments. The highest weight represents the highest preference of the judge 

towards a specific input factor (cue). 
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Appendix 2: Results of the regression analysis (linear, nonlinear) of the DES. 
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Appendix 3: Performance levels and ranges for all input parameters (“cues”). 
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Mapping quality linkages based on tacit knowledge 

 

 
Abstract 

A structured conceptualization method, concept mapping, is applied to visualize the 

conceptual domain of explicit and tacit quality linkages in a complex, causally ambiguous 

production system of a premium automotive OEM. Experts, intimately familiar with all facets 

of the conceptual domain, defined sources of quality problems and rated their impact on 

product quality. These inputs, formative measures for a latent construct, were used to create 

concept maps and clusters for the sources of quality problems. Differences and disagreements 

between subgroups were highlighted by pattern matching. The concept map and the preferred 

cluster solution, based on user-defined measures, served as inputs in the development of a 

causal loop diagram and an action plan for better resource allocation to specific improvement 

activities. The approach, using formative rather than the more commonly used reflective 

indicators, uses key informants and explanation building processes of high internal validity. 

In the spirit of the “proximal similarity model,” the presented methodology is also highly 

transferable to similar settings of other automotive OEMs and beyond. 

 

Keywords: Soft Quality Management, Concept Mapping, Knowledge Creation  

 

 

1. Introduction 

 
Lippman and Rumelt (1982) describe causal ambiguity as the degree to which decision makers 

understand input-performance linkages when creating and managing complex processes. In 

complex manufacturing systems with correlated stages, interdependencies, uncertainties and, 

consequently, with many sources of causal ambiguity, it is critical to identify quality linkages that 

affect the quality of the final product (Zantek et al., 2002). The authors observed issues related to 

causal ambiguity and quality linkages in a manufacturing unit of a premium automotive OEM – 

producing exterior body parts for luxury sports cars – with several correlated stages and various 

highly variable inputs per process (e.g., machines, materials). As product performance, in terms 

of quality, was a competitive priority for the business unit and for similar production systems 

(Schmenner and Vastag, 2006), management wanted to improve their understanding of factors 

affecting overall product quality. The goal was to identify the most important inputs and solutions 

to improve quality performance within the whole value stream of the production system.  

Quality costs were high due to many required changes in machine parameters to ensure proper 

quality levels of a highly heterogeneous product mix with many changeovers and low batch sizes. 

Several attempts had been made to improve quality assurance and measurements to improve the 

overall quality within the system; yet a significant number of products had to be scrapped or 
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reworked due to lack of knowledge and holistic insight into quality linkages. It was not clear to 

management which of the many factors, and what subsequent processes, had the most significant 

impact on quality. Data generated in one step of the process could not be linked to errors detected 

in the following steps and no decisions could be made to holistically improve quality over the 

whole value stream. All this resulted in a general lack of understanding of resource allocation 

towards the most efficient and effective quality improvement initiatives. It became extremely 

difficult for management to define policies without a clearer picture of quality linkages and issues 

that resulted in lower quality performance.  

The authors decided to use a structured conceptualization methodology (Trochim and Linton, 

1986), called concept mapping, to map the conceptual framework of quality and quality linkages 

within the system. The reasoning was that by creating a holistic picture of the problem domain, 

based on the tacit knowledge and experience of the engineers of the system, learning and 

understanding of cause and effect relationships could be facilitated. Concept mapping was chosen 

because it is more suitable to deal with causal ambiguity and it is more likely to create a more 

complete understanding of the system, as described in section 2. The goal was to use concept 

maps, consisting of all known quality issues, to ultimately select and plan quality improvement 

initiatives for the production system. Additionally, based on the results of the concept map, a 

causal loop diagram was created to further analyze casual relationships within the conceptual 

domain. Finally, the paper – using the results of concept mapping – presents an action plan for 

quality improvement to the management team of the business unit. 

The structure of the paper is as follows: section 2 describes the literature on tools and principles 

of knowledge creation, process improvement and innovation, and gives an overview of concept 

mapping. Section 3 deals with the practical application of concept mapping and the explorative 

case study within the business unit. We summarize the results in section 4. Theoretical and 

practical insights are discussed in the fifth, and final, section of the paper. 

2. Literature Review 

 

One of the central drivers of performance in complex social systems, like modern 

manufacturing plants, or supply chains, is the behavior of individuals, groups, or the 
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whole organization (Gino and Pisano, 2008). This is also the case for quality management 

(QM), where an increasing number of authors specifically investigate behavioral factors 

(soft QM) in their studies (Cho et al. 2017; Zeng et al. 2015). Soft factors, such as 

organizational learning and knowledge creation, are critical in most areas of operations 

management and, for that matter, in QM. The focus of how QM can enhance 

organizational learning and innovation (and vice-versa) is a central aspect of research in 

QM (Fundin et al. 2018; Asif, 2019; Dahlgaard et al. 2019) and the theoretical basis for 

our practical application.  

2.1. Soft Quality Management and Organizational Learning  

Mukherjee et al. (1998) defined two types of learning in an organization: conceptual and 

operational. Operational learning is focused on implementing and observing factors in an 

operative setting and drawing conclusions directly from experiences of problems in 

processes and solving those issues to achieve short-term goals. Conceptual learning, on 

the other hand, is more related to the assessment of cause and effect relationships and the 

design of abstract concepts. They concluded that conceptual learning is better suited to 

analyze more important factors of organizational learning and firm performance. The 

more valuable long-term goals are, for example, changing attention paid to measured 

variables and knowing the specific impact of factors on process variability and quality. 

This ensures more efficient and effective quality improvement based on a deeper and 

broader understanding of causalities compared to short-term operational problem solving. 

They specifically consider behavioral factors, organizational behavior, dynamic 

complexity, and ambiguity when comparing those two forms of learning in terms of 

quality improvement. A more conceptual focus is therefore necessary to explore quality 

linkages in complex production systems with causal ambiguity. 

Choo et al. (2007) distinguish between two forms of learning, similar to Mukherjee et 

al. (1998): exploratory learning and exploitation learning. Exploitation learning, like 
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operational learning, is focused on the application of methodological elements in an 

operative setting by using explicit knowledge. Exploratory learning is aimed at creating 

novel ideas and innovative solutions based on tacit knowledge and contextual elements 

(soft issues). While methodological elements contain metrics, tools, and stepwise 

problem-solving approaches to facilitate standardized and explicit quality programs, 

contextual elements include soft issues, like leadership, collaboration, and trust, to boost 

tacit knowledge creation through empowerment. More innovative solutions for quality 

problems based on tacit knowledge produce durable competitive advantages because they 

are difficult to imitate (Winter, 1987). This makes tacit knowledge a more valuable 

resource for a company, according to the resource-based view (RBV) of the firm (Barney, 

1991), and should be the focus of learning and knowledge creation in QM.  

Knowledge creation and dissemination of tacit knowledge from an individual to tacit 

knowledge of the group is called socialization in the knowledge creation framework of 

Nonaka (1991). While methods to create and disseminate explicit knowledge (e.g., 

simulation, regression, value stream maps, fishbone diagrams, etc.) are relatively 

straightforward, it is not so transparent with tacit knowledge. Anand et al. (2010) mention 

practices like brainstorming, or nominal group technique (Bartunek and Murninghan, 

1984) for socialization of tacit knowledge in their study on the role of tacit knowledge in 

Six Sigma projects. They argue that it might be difficult to capture and apply tacit 

knowledge, especially in cross-functional teams that come together for a short-term 

project without significant cohesion and developed relationships among group members. 

It takes a substantial amount of experience and soft skills to facilitate tacit knowledge 

dissemination among group members in order to find and implement potential “winner” 

process improvements that could create long-term competitive advantages for the firm.  

2.2. Soft Quality Management, Innovation and Process Improvement 

Zeng et al. (2015) and Zeng et al. (2017) view small group problem solving and employee 
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suggestions as important aspects of soft QM in that it allows for collective expertise in 

group decision-making and implementation of problem-solving plans. They claim that 

firms should promote employee participation in decision-making processes through 

empowerment and encouragement to ensure process quality, competency, and customer 

focus. Zeng et al. (2017) found that soft QM has a significant positive impact on hard QM 

and plays an important role in improved innovation performance, either directly or 

indirectly through improved hard QM. By promoting soft QM and the integration of 

worker experience, organizations can achieve higher innovation performance by finding 

different, and potentially better, solutions to existing problems. 

One of the most important factors for the success of soft QM and its impact on 

innovation performance is the proactive behavior of people within the organization 

(Escrig-Tena et al., 2018). People need to understand the conceptual framework of quality 

based on strategy, tactics, processes, competitors, and organizational results to help align 

employee behavior and organizational objectives to promote innovation based on soft 

QM and organizational learning. (Dahlgaard et al. 2019) The work of Escrig-Tena et al. 

(2018) indicates that, while soft QM might not have a direct impact on innovation, it can 

create an infrastructure and atmosphere of empowerment and teamwork that allows 

employees to act and develop new ideas. Employees fully demonstrate proactive behavior 

only if they are well-informed about the firm, their work, and the problems they are faced 

with; thus, making it critical to create a conceptual framework for the environment they 

work in.  

Not only the behavior and understanding of employees is important for finding 

innovative solutions in complex and dynamic areas, but also the thinking of management 

plays a significant role for performance improvement. Cho and Linderman (2019) 

analyzed the impact of managerial metacognition on process improvement practices and 

firm performance. While cognition is defined as the knowledge structure used to make a 
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decision, metacognition is the higher-order process that controls the underlying 

knowledge structure. Usually, managers could potentially decide between multiple 

decision frameworks and different kinds of information to formulate responses to 

different problems. Cho and Linderman (2019) use the level of understanding of the usage 

of different kinds of information as a variable to define the metacognitive experience of 

managers. Also, the conscious focus on important information and re-evaluation of 

usability and applicability of different kinds of information are indicators of managerial 

metacognition. This conscious thinking and understanding of how knowledge should be 

used and the search for different kinds of information can help management adapt to 

rapidly changing environments in order to create a competitive advantage for an 

organization. A holistic awareness of the conceptual domain is critical to reach higher 

levels of managerial metacognition to find innovative solutions and to change 

management’s perception of specific problems and potential solutions. 

2.3. Concept Mapping 

To facilitate tacit knowledge creation and innovation in causally ambiguous 

production systems, we apply concept mapping, to create a 2D representation of the 

problem domain as seen by a management team and a team of experts. We holistically 

analyze quality linkages in the small-volume, batch production system of an automotive 

OEM that faces high degrees of variability and causal ambiguity. Previously, concept 

mapping has been used extensively in program management, for example, to assess the 

conceptual framework of staff’s views of a supported employment program for persons 

with severe mental illness (Trochim et al., 1994). In an operations management context, 

however, it has been used only very scarcely – for example, to show how management 

views the benefits of acquiring an ISO 14001 environmental certification and contrasting 

it with the views of experts (Vastag and Melnyk, 2002). The methodology is still highly 

popular in many scientific fields, as a recent special publication dedicated to it was issued 
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(Trochim and McLinden, 2017). 

By creating a visual representation of the conceptual framework of a problem, the 

applied methodology facilitates proactive behavior to make knowledge explicit and 

usable for an organization. Concept mapping increases the understanding of employees 

and includes them in the improvement process. It furthermore facilitates innovation and 

managerial metacognition by unveiling potentially novel approaches due to the holistic 

methodology of mapping the conceptual domain in its entirety.  

One of the most difficult and important steps in planning is the initial 

conceptualization, which ultimately determines the success of all following steps. 

Concept mapping can be used whenever a group of people should develop a conceptual 

framework for evaluation or planning, and the content of the maps is entirely determined 

by the group. Each map is a pictorial representation of the group’s thinking, displays their 

ideas regarding a specific topic, and shows relationships between those ideas and their 

relative importance, based on the methodology developed by Trochim (1989). The 

methodology consists of six steps followed in this study: 

Step 1: Preparation - This step includes the selection of participants and the definition 

of a focal point of the conceptualization. 

Step 2: Generation of Statements - Statements should be created based on a “prompt” 

to represent the conceptual domain of the topic of interest. This part is very similar to a 

traditional brainstorming approach and as many statements as possible should be created 

to ideally represent the entire conceptual domain of the topic. As many different 

statements as possible should be generated and there should be no criticism regarding the 

legitimacy of statements as long as they fit into the previously defined area of focus. 

Step 3: Structuring of Statements - In this step all statements are sorted and ranked by 

the participants. Unstructured card sorting can be used to sort statements and put them 

into clusters. Response scales (Likert) are used to rank the importance of statements. 
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Step 4: Representation of Statements - Three tasks are necessary to graphically 

represent the conceptual domain based on the similarity matrix from step three. The first 

task is the creation of a point map, which locates each statement as a separate point on 

the map, with statements placed closer to each other if they were more frequently sorted 

into the same pile. To accomplish this, nonmetric multi-dimensional scaling of the 

similarity matrix is conducted to create the point map. This technique takes a proximity 

matrix and represents it as distances between the original items in the matrix (Trochim, 

1989) – most of the time as a two-dimensional solution to make it easier to interpret. The 

second task is a hierarchical cluster analysis that groups points on the point map into 

clusters. The X-Y coordinate data from the multidimensional scaling is used to group 

points into any number of clusters. The difficulty in this task is the decision on how many 

clusters are optimal to give a viable and meaningful solution because, in general, any 

number of clusters is possible. The final task is to overlay the clusters with the average 

rating from the participants to obtain a cluster rating map that visualizes all the 

information, which, in turn, gives a full representation of the conceptual domain to be 

interpreted. 

Step 5: Interpretation of Maps - Several maps that provide different views of the same 

structure can be created in the fifth step, with different clusters to be analyzed by the 

participants. The goal is to find a mutually acceptable solution, which makes sense for all 

participants, with the right number of clusters and proper labeling. Then, cluster ratings 

can be compared among clusters and the concept domain is fully mapped based on the 

available information. 

Step 6: Utilization of Maps - The final step is to use the maps for evaluation or planning 

purposes, and other applications, which will be demonstrated in the next sections of the 

paper. 
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3. Practical Application and Case Study 

 

3.1. Company Overview 

 

The case study was conducted at the production division of the automotive OEM during 

the first quarter of 2018. The production system consists of five stations with grouped 

equipment. Small batches of a broad product mix are produced, and parts are transported 

between stations in specialized containers, as depicted in figure 1. The press and laser 

workstations are producing components out of metal discs, which are then assembled at 

three specialized assembly stations. The aluminum and stainless-steel parts are then cured 

in a furnace in specialized furnace fixtures to ensure geometry and form of the final 

product. Finally, products are “finished” to ensure proper surface quality of all external 

car body parts. Quality checks could potentially be done between all steps of the process 

but they are costly and time consuming because surface, geometry, and stability of the 

parts are critical for quality of the final product so they must be closely inspected with 

specialized equipment. The only full-scale quality inspection is done after the curing 

furnace since the curing process has a significant impact on the geometry due to heat 

deformation of the material. The results of the quality inspections are then transferred to 

the finish department in order to define proper counter measures and potential rework in 

addition to the standard surface quality improvement activities.  

 

Figure 1. Value stream of the business unit 
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Contrary to holistically planned large-scale production systems, the production system 

at hand was created out of different low-cost solutions to reduce initial investment cost 

for extremely low batch sizes. A typical one or two-week production batch for one of 

over 25 different products is around 100 to 200 parts for the component production 

stations (press, laser) and about 50 to 100 parts for the assembly systems before machines 

are set up for the next batch. It becomes increasingly difficult to achieve stable processes 

and create reliable quality information with smaller batch sizes compared to large-scale 

production by about a factor of 30, or more. Most of the equipment is highly flexible so 

it can produce various different product types. However, there is very little 

interchangeability between products from one assembly system to the other. Assembly 

systems usually require extensive ramp-up and quality optimization for dedicated body 

shop assembly lines, which typically only produce two or three similar product types. For 

every set-up of each production batch there can be significant variations in process 

parameters and parts quality which, combined with the curing process, results in 

inconsistent product quality.  

The business unit is an internal supplier of the automotive OEM; finished body shop 

parts are shipped to various other factories of the OEM in different countries for final 

assembly of the car body. Feedback on the overall fit of parts into the car body is therefore 

delayed by one or two weeks and every batch could potentially result in different quality 

complaints from internal customers. Customers then have to define specific rework 

required in their manufacturing facilities or send the parts back for rework to the business 

unit, or, in the worst case, scrap them. The business unit works with internal customers 

to solve specific and recurring quality issues, but a general collaboration to improve 

quality management is difficult due to differences in production concepts and processes. 

Quality optimization measures, typical for large-scale systems, often do not bring the 

desired results due to high variability and time lag of feedback on quality. It became 
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increasingly difficult for the business unit to react to varying defects and quality 

problems, which is why the conceptual domain of the problem area should be mapped 

first to deal with clusters of critical problems with holistic solutions based on causal 

analyses. Simply adopting existing quality management tools would not yield the same 

benefits compared to a tailored system based on the aforementioned reasons.  

The existing quality system was also not adequate to deal with the high quantity of 

different quality issues since quality linkages and causal relationships were not very well 

understood. Generally, the automotive industry is deploying a wide variety of tools and 

techniques of quality management (Fonseca and Domingues, 2017); however, it is 

important to select only the most appropriate and useful methods, especially for small-

scale production systems. The business unit uses the OEM´s quality management system, 

which employs tools of lean management (Shah and Ward, 2007) and Kaizen, or 

continual process improvement (TAhB Academy, 2016). However, no tool was really 

implemented with significant results because they were not aimed at specific targets and 

could not solve the underlying quality issues of the production system. Production 

systems in large-scale production are fine-tuned and holistically planned machines that 

operate mostly with already proven processes and technologies. For example, several 

expensive statistical process control (SPC) systems are used at specific points in the 

process known to be critical for process stability and product quality. The same 

generalized concept would not be possible, or economical, in small-scale production due 

to high costs and too many influencing factors unknown to large-scale systems. 

The innovative aspects of highly flexible low-cost production equipment and solutions 

result in several unique challenges faced by the studied small-scale production system. 

Extensive and holistic restructuring of the quality management system was necessary to 

improve the business unit in general, and specific quality issues within the production 

system. Large-scale production systems are usually designed to continually improve 
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specific aspects of product and process quality based on detailed analyses and data from 

SPC, and rarely implement completely new production concepts on a broad level. These 

differences require a new and better approach to solve the aforementioned issues because 

alignment of existing technical and behavioral practices is critical for the success of 

quality management systems (Asif, 2019). 

3.2. Creating the Concept Map 

Nine experts, divided into two subgroups for the purposes of pattern matching, 

participated in several brainstorming sessions to generate statements regarding the 

sources of quality problems within the business unit. Participants in this study are 

members of management and operative experts from several departments (production, 

quality assurance, and engineering), who are responsible for quality performance of the 

system. With the exception of one expatriate from the headquarters of the company, who 

is a long-term employee within the business unit, all participants had an MSc degree in 

engineering. Furthermore, considering the work environment it is not surprising that there 

was only one female participant.  

Table 1. Participant Characteristics 

 

The scope of the analysis was a mapping and analysis of quality linkages between all 

steps of the process, from metal sheet to finished exterior car body part. All participants 

were encouraged to contribute as many statements as they could come up with sources of 

quality issues in the manufacturing unit. Each statement started with the phrase: “One 

source of quality problems is: …” and was completed by the participants based on their 

experiences and opinions on the most important quality issues in the production system.  

After removing duplicates and cleaning up the list, 41 statements were generated, which 
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are summarized in table 2. The study was conducted in German, then translated by the 

authors and verified by English-speaking experts in the manufacturing system to ensure 

translational validity.   

 

Table 2. Brainstormed statements with average participant ratings in parenthesis 

 

Top-three highest-rated statements in bold text 

 
1 Dirty metal discs (3.60) 

2 Pressing tools are not clean enough (3.60) 

3 Varying surface qualities after assembly (2.90) 

4 Finish work not according to defined standards (2.50) 

5 Low-cost concepts for containers (3.40) 

6 Quality team too small (not enough capacity) (2.90) 

7 Manual handling at press (no robotic linkage between pressing operations) (3.20) 

8 High quality variability in press due to press tool construction problems (3.50) 

9 Employee errors (missing components, wrong sequence of components inserted into 

fixture) (3.20) 

10 Bad positioning in pressing tool and fixture (3.30) 

11 Poor metal discs and purchased parts (3.10) 

12 Unstable processes (4.00) 

13 Bad externally sourced products (e.g., external laser cutting) (2.80) 

14 Old part numbers (long time in storage and between two production steps, parts become 

obsolete, FIFO problems) (3.30) 

15 Many joining technologies (welding, riveting, press joining, etc.) (2.90) 

16 Old and obsolete metal discs end up in production (3.50) 

17 Bad fixture settings (e.g., curing fixture) (3.30) 

18 Not enough information regarding part changes (missing change management) (3.20) 

19 Poor packaging (e.g., wooden pallets for metal discs) (3.00) 

20 Missing sample parts or sample parts are not used to check for quality issues (2.80) 

21 Containers are in bad condition (missing container TPM) (3.00) 

22 Transport damages, bad storage system, too many transports, difficult routes for 

forklifts (2.70) 

23 Many fixture changes and general characteristics of small-scale series production (many 

products, low quantity, high complexity) (3.00) 

24 Dirty fixtures (3.30) 

25 Low-cost concepts for pressing tools, only improved prototype tools in series 

production (3.90) 

26 Lack of KPIs for production stability (e.g., OEE, OWE and min/max boundaries) (2.50) 

27 Lack of influence / participation of manufacturing during concurrent engineering phase 

(3.33) 

28 Missing risk assessments (3.30) 

29 Missing quality measurements regarding metal disc quality (breaking stress test, oiling) 

(3.00) 

30 Weak inspection during production, almost no gauge sampling, not enough visual 

checks and defective parts are passed on to the next step of the process (4.20) 

31 “Forgotten” parts within production (prototypes, optimization parts, etc.) become 

obsolete and must be scrapped (no control in SAP) (2.60) 

32 Missing TPM (2.80) 

33 External storage of pressing tools (temperature and weather conditions not optimal) 

(2.70) 
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34 Variable raw material quality causes frequent adjustments of machine parameters 

(“playing around” with parameters) (3.20) 

35 Missing part numbers cause confusion (common parts, e.g., screws, bolts can be mixed 

up) (2.70) 

36 No Poka-Yoke to prevent against forgetting to insert components, bad positioning in 

fixtures and parts can still be processed until the end (3.20) 

37 Bad positioning / movement of parts in fixture (3.11) 

38 Missing information / communication with customers regarding quality and 

performance (3.10) 

39 Missing information / communication with planning department in concurrent 

engineering phase regarding quality and performance characteristics during ramp-up 

(3.30) 

40 No integrated quality information over the whole process chain (from metal disc to final 

assembly (3.40) 

41 Employees do not follow specific quality assurance processes (3.70) 

 
 

The statements were then sorted by the participants in a different session to create the 

similarity matrix, showing how many times each statement was grouped together with 

any other statement. Participants were given a card for each statement which they had to 

sort into piles in an order that made sense to them. They further had to rate each statement 

on a 5-point Likert scale based on its influence on quality problems with ‘1’ meaning that 

it causes only a few light problems, and ‘5’ meaning that it causes many severe quality 

problems. All results were then entered in a similarity matrix to summarize how many 

times each statement was grouped together with any other statement for all participants. 

The average rating of each statement was calculated to give an overview of the 

importance of each statement based on the judgments of the experts. 

Monotonic two-dimensional scaling was used to create the point map (Kruskal and 

Wish, 1978). The stress value was 0.138 and is a relatively low value compared to other 

concept mapping applications, which indicates a good fit (Kane and Trochim, 2007). An 

R2 of 0.898 further supported the fit of the point map. For clustering, hierarchical cluster 

analysis using Ward’s algorithm was utilized. Generally, it is difficult or impossible to 

decide in advance which is the “best” clustering method and the number of clusters to be 

chosen. Regarding the choice of the clustering algorithms we relied on previous empirical 

studies. Based on a large number of empirical studies, Trochim (1989) found Ward’s 
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algorithm to be the most useful. Ward’s algorithm, minimizing the within-cluster sum of 

squares to the between-cluster sum of squares at each level of joining, generally gave 

more sensible and interpretable solutions than other approaches (e.g., single linkage or 

centroid method). All statistical calculations were carried out in SYSTAT 13.2.01.  

The number of clusters was determined by group consensus. The solution with eight 

clusters seemed most representative (compared to solutions with four, six, and ten 

clusters) for the researchers and the experts with a clear relationship of points within each 

cluster. Each cluster was then appropriately labeled, and the average ratings were added 

to complete the cluster rating map, as seen in figure 2. In this paper the map is used to 

create a causal loop diagram based on the clusters of the concept map and to ultimately 

develop an action plan for the selection of future quality improvement projects within a 

continual improvement process.  

 
 

Figure 2. Cluster Rating Map with eight clusters and average ratings 
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3.3. Using the Concept Map as an Input for Causal Loop Diagrams 

A causal loop diagram (CLD) is an intuitive tool of system dynamics (Maani and Cavana, 

2007) to visualize and analyze causal relationships within complex systems. They are also 

used in group model building (Rodney, 2018), and therefore an excellent complement for 

concept mapping. Like Zeng et al. (2017), we found that the result of an analysis based 

on soft QM has a significant positive impact on “harder” QM when using the concept 

map as the foundation to create the CLD. Statements of one cluster could be placed close 

to each other to facilitate the analysis of causal relationships within the CLD. Only 

“positive” causal relationships and reinforcing loops exist in the diagram, since only 

quality issues are mapped in the concept map. “Positive” relationships mean, in the sense 

of a pure analysis of quality issues, that factors are increasing the negative impact of 

related factors and reinforcing loops cause even more quality problems. The goal of the 

causal loop analysis was to get a clearer picture of the relationships between each cluster 

and each point within the clusters. No balancing factors and loops are considered in this 

phase. Almost all 41 statements generated in the concept mapping study were included in 

the CLD, with only a few redundant ones eliminated for the sake of readability and clarity. 

Also, cluster titles were included as an anchor point in the diagram. 
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Figure 3. Casual Loop Diagram based on Concept Map 
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4. Result 

4.1. Results of Concept Mapping 

The concept map combines similar problems into clusters of statements (ranked by their 

perceived importance) and shows connections and importance ratings simultaneously. 

This visualization method is based on expert knowledge and aims to reduce causal 

ambiguity in decision-making regarding QM, especially quality improvement. The first 

cluster contains quality issues regarding the pressing department and raw materials 

(especially metal discs). It has the second-highest rating of 3.275 (see figure 2) and is a 

critical factor of quality. This is understandable because it is responsible for all 

components used in the assembly system and can negatively affect all following steps of 

the process. A critical aspect of this cluster is to ensure that the raw materials and tools 

coming into the production system have the right quality and are prepared (cleaned) to 

function at the highest level.  

The second and sixth clusters can potentially be grouped together because both deal 

with missing information due to a lack of quality checks (cluster two) and general lack of 

KPIs and information (cluster 6). They are relatively less important (3.125 and 2.933, 

respectively) and contain all points associated with work and capacity of the quality 

department, including risk assessment, communication with customers regarding quality 

and the like. This culminates in a general lack of integrated quality information over the 

whole value stream and related KPIs.  

Another critical cluster (three) deals with failures to detect and prevent quality errors 

by workers in time with an average rating of 3.25 for all points in that cluster. Lack of 

proper training and finish work falls into this cluster along with weak quality controls by 

the workers and handling of errors. Its location at the center of clusters two, six, eight and 

seven means that points in cluster three were also relatively frequently sorted into the 

same piles as points in those other clusters. One explanation for this could be the failure 
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of workers to follow standardized processes to report quality data properly, which 

prevents them from analyzing causes and defining measures to prevent quality issues in 

the first place. The high rating showcases the strong links and implications this cluster 

has on many other issues when it comes to holistic QM.  

The fourth cluster deals with logistics and transportation damages but is not very 

important (3.025) based on the ratings of the experts for all statements in this cluster. The 

fifth and seventh clusters, however, are highly important for quality within the system. 

They deal with the general characteristics of small-scale series production and unstable 

processes with a rating of 3.287 and 3.23, respectively. It is questionable if factors like 

“low-cost concepts of pressing tools” and a “multitude of assembly technologies” can be 

improved but they certainly have an influence on quality due to poor equipment and 

increased complexity. The position of the cluster for unstable processes is understandably 

at the center of the point map because it influences many other inputs and was generally 

grouped together with various other statements by the participants. Clusters five and 

seven could also potentially be consolidated into one single cluster due to the many 

relationships between statements and proximity on the point map. We decided against it 

to ensure that very specific solutions could be generated in the following steps and not to 

over-generalize the results. It was uncertain that potential solutions to specific clusters 

would be applicable to other clusters as well; therefore we kept them separated.  

The last cluster (eight) contains points regarding change management and making sure 

that machines and materials are ready for production with the correct part numbers and 

machine settings. It is relatively less important with an average rating of 2.975 with only 

four statements falling into this cluster. For example, old and obsolete material entering 

production because it was not properly tracked throughout the value stream, and FIFO-

rules were not kept according to defined standards.  
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In order to highlight subgroup differences potentially masked by group averages, we 

also compared the evaluation patterns of two subgroups. Group 1 included general 

functions responsible for all processes and Group 2 the direct functions for specific 

production-related processes. Group 1 was mostly comprised of younger people with less 

experience and Group 2 included highly experienced people, experts in their specific 

production area, the “old guard.“ If the two groups had mostly similar importance ratings 

across the eight clusters then the results would be visualized as a ladder graph with mostly 

parallel and horizontal rungs. Disagreements between the groups would be indicated by 

intersecting rungs. In figure 4 below (produced by JMP® Pro 14.3.0) the clusters are 

listed by their group importance ratings and the identical clusters are linked by the “rung” 

of the ladder. 

 

Figure 4. Cluster importance ratings for the two groups 

There are two take-away messages from the graph: (i) the two groups are very much 

different, their importance ratings are not really correlated, (ii) members of Group 2 – the 

“old guard” – rate, on average, all statements higher than members of Group 1. Even the 
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lowest rated cluster in Group 2 (cluster 8) was rated higher than the highest rated cluster 

of Group 1 (cluster 5). Group 2 perceives the statements to be much more important, 

perhaps because they deal with the phenomena described in a much more direct fashion 

on the shop floor; they are much closer to the problems than members of Group 1.  

4.2. Findings from the Causal Loop Diagram 

Several root causes have been identified that do not have a direct input from other factors 

identified by the team of experts. A bad storage system and too many transports were a 

root-cause of the logistics and transportation cluster, which causes scrap due to 

transportation damages. The quality team was too small, according to the team of experts, 

which was one cause of weak inspection during production and, subsequently, missing 

quality checks and quality information. Poor externally sourced products (metal discs) 

caused high variability of surface quality and process instability, and in combination with 

low-cost press tool construction, this affected the press department.  The lack of TPM 

was another cause of problems, specifically dirty and badly set up fixtures in the assembly 

systems and pressing tools as well.  

The CLD identifies three main outcomes based on defined quality issues by the team 

of experts. Logistics and transportation damage were one of the main factors of quality 

problems and increased quality cost due to inadequate work in progress- and finished 

goods containers, albeit not the most critical one. Another end result with no direct 

outwards-facing connection to other factors in the CLD was the scrapping of old part 

numbers and “forgotten” parts within production that eventually became obsolete. This 

resulted in additional quality costs due to a poor storage system with too many transports 

and missing information on changing and obsolete components parts as a result of a lack 

of communication between engineering and planning departments. The third, and most 

important, outcome of the CLD was process instability due to varying surface quality that 

came from the press and laser departments on one hand, and varying geometry of parts 
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due to badly adjusted fixtures in the assembly department on the other hand. “Unstable 

processes” was also the second highest-rated statement generated in the concept mapping 

analysis and supposedly caused the highest amount of problems and quality costs.  

Analyzing the causal relationships and reinforcing loops within the CLD, one can 

identify several loops on the top-right side of the diagram. Several smaller loops reinforce 

a larger one, which spans across most of the top-weighted clusters, increasing the number 

of issues due to small-scale production factors and problems resulting from workers on 

the shop-floor. Additionally, missing quality checks and a lack of KPIs are factors in this 

loop. This can be explained by the fact that there are many manual processes but no aid 

for workers to ensure that they perform their work correctly (missing Poka-Yoke). There 

is also a lack of information for workers regarding KPIs and critical quality issues they 

should inspect based on defined quality assurance processes. This results in weak 

inspections during production and a high probability of errors that go undetected. Cluster 

3 (worker failure) received the highest score of all clusters for the front-line employees 

of group two (see figure 4) because they are missing critical inputs and methods to 

perform their work correctly. Several loops reinforce these effects when considering 

missing quality checks and, as a result, lack of information and KPIs in the first place. 

Important information from the shop floor is also missing during planning and 

engineering, and for the creation of an integrated quality information system to better 

track KPIs and generate information efficiently. Nothing is being done to prevent 

detrimental small-scale series production characteristics, which is causing workers to fail 

due to a lack of aid for more complex manual processes compared to large-scale 

production systems. This can be confirmed by the authors after analyzing process 

standards of the assembly systems, which show an approximately seven times longer 

cycle time (time to produce a unit of output) compared to large-scale systems. 

Furthermore, they show a three to five times higher number of individual tasks for a single 
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worker in each cycle. This causal loop ultimately results in high process instability 

because workers cannot cope with the increased requirements of small-scale production 

due to complex processes and a lack of support.  

4.3. Integrating the Results to Create an Action Proposal 

The results of the analysis can be used to plan and allocate resources to improvement 

projects with the highest returns in terms of quality performance as perceived by the 

management team and team of experts. It can also help to define quality measurement 

strategies to ensure that the most susceptible steps of the process are secured using the 

highest rate of measurements. The maps are comprised of the collective experience and 

knowledge of the team of experts to map the conceptual domain of the problem area. The 

most important clusters lie mostly at the center of the map, emphasizing the linkages and 

influences towards other clusters. In combination with the relative ratings and the CLD, 

it gives a clear picture of the overall situation within the system, which helps decision 

makers define better policies and allocate resources towards the most important 

improvement initiatives.  

Visualizing tacit knowledge can significantly increase common understanding of the 

whole team regarding a matter of interest; thus, reducing causal ambiguity. An action 

proposal was developed based on the created information to make results of the analysis 

even more usable for the management team. The methodology was adopted from Friend 

and Hickling (2005) and it has been mentioned in the literature that this approach is 

always useful to increase the applicability of OM/OR interventions (White, 2016). This 

method defines immediate decisions and future decision space for all relevant decision 

areas based on the current level of information and uncertainty related to different options. 

Immediate actions should be taken if the current level of information is sufficient to 

justify these decisions. However, if there is not enough information regarding a decision 

area, and there is still time to reduce the risk and uncertainty, resources should be invested 
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into further explorations. A future decision space ensures that other decision areas do not 

fall off the radar and can still be considered for decisions made in the future. Considering 

the high number of deferred choices and factors for contingency planning it becomes 

apparent that extensive analyses based on soft QM and hard QM would be beneficial to 

support decision makers. Complex and causally ambiguous production areas can 

especially benefit from structured approaches and detailed cause-and-effect analyses.  

Table 3. Action Proposal 
 

5S – Sort, Set/Straighten, Sweep/Shine, Standardize, Sustain (method of Lean 

Manufacturing to improve workspace conditions and cleanliness); SFM – Shop Floor 

Management; SPC – Statistical Process Control; TPM – Total Productive 

Maintenance; DFM – Design for Manufacturing; FMEA - Failure Mode & Effects 

Analysis. 

 

 
  

The action proposal was created based on the cluster ratings, the average rating of each 

point within the clusters, and the findings from the CLD. Immediate actions were defined 

for the most important clusters, and more specifically, for points within each cluster. This 

gives an extremely specific set of decisions based on the concept mapping analysis and 

can be used by the experts for improved resource allocation and QM. Some of the more 
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important statements require further analysis and exploration to create better information 

on which further decision should be made. Other, less important, points are not 

completely dismissed and forgotten, but rather pooled in a future decision space to be re-

evaluated in the future. This depends on the future state of the system and the outcome of 

immediate decisions and explorations. The goal is to continuously manage a relatively 

complete list of actions based on tacit knowledge of the team of experts and allocate 

resources to the most important points in an efficient and effective way. 

Quality problems that arise as a result of small-scale series production characteristics 

was the highest-rated cluster of the concept mapping analysis and also the most important 

factor for Group 1. Group 1 considered the inherent issues of small-scale production as 

the most important factors in general. Therefore, they should focus on the implementation 

of Advanced Product Quality Planning (APQP) to increase the influence of the business 

unit during planning and engineering in order to create a holistic production system. Most 

drawbacks of small-scale series production could potentially be solved with a higher 

focus on producibility and error prevention in the engineering phase to increase quality 

performance. Design for Manufacturing/Assembly (DFM/DFA) should be considered 

when planning and designing products specifically for small-scale series production. An 

important concept to be considered as well is Failure Mode and Effects Analysis (FMEA) 

to analyze potential sources of errors before products are introduced to the business unit. 

The optimal solution would be to find foolproof (Poka-Yoke) product designs and 

manufacturing concepts to increase process stability and make it easier for workers on 

the shop floor.  

The production-centered Group 2 is more focused on people and missing information 

– both factors that prevent them from performing a better job on the shop floor. They 

should focus on the creation of information from the shop floor with improved shop floor 

management (SFM), which will allow them to report day-to-day problems back to the 
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engineering group so they can be considered in the APQP. SFM includes all people in the 

workplace into production-related management- and control processes (Suzaki, 1993). It 

is another method of lean manufacturing and enables continual improvement based on 

suitable KPIs directly from the shop floor. With this method, workers could immediately 

improve their own situation and generate the necessary information before investing 

heavily into statistical process control (SPC) systems at a later stage.  To further increase 

employee awareness, and improve workspace conditions and cleanliness, it is also 

recommended to apply the 5S (Sort, Set/Straighten, Sweep/Shine, Standardize, Sustain) 

methodology as a general starting point for improvement of the production system. With 

only these three specific concepts, which are defined as immediate action in the action 

proposal, the production system could break the large reinforcing causal loop to prevent 

the system from spiraling further down into “production hell”. 

5. Theoretical and Practical Insights 

King and Zeithaml (2001) found that intra-firm causal ambiguity (the lack of a common 

understanding of cause and effect relationships between people within the organization) 

could severely reduce the performance of a business. Our study aims to improve quality 

efficiently and effectively in the production system of an automotive OEM by reducing 

this form of causal ambiguity. On the theoretical front, following the suggestions of 

Diamantopoulos and Winklhofer (2001), we propose a formative model for describing a 

multidimensional latent construct, i.e., the quality problems of an automotive OEM. In 

simple terms, causal priority differentiates between a formative and a reflective model: in 

the case of the former, causality flows from the indicator(s) to the latent construct, in the 

case of the latter, the other way around. We posit that in most organizational settings, 

manifest (directly measurable) variables are not only preferred to latent constructs but, 

often, they are the only options. Consequently, manipulating the user-defined measures 

of our formative model will lead to the improvement of the quality construct.  
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Based on this analysis and the understanding of the team of experts, most quality issues 

were caused by poor raw materials and tools right at the beginning of the value stream 

(clusters 1 and 5). This resulted in defective products, which were handed over to the 

following steps of the process due to the lack of inspection and not being able to detect 

those defective products (cluster 3). At the business unit, however, the main quality 

inspection was located right after the curing furnaces and before the finish department 

(see figure 5). Explicit information (coming from the monitoring and analysis of scrap 

and rework rates) showed that most quality costs arose between the curing furnace and 

the finish department because most of the defective parts were detected there. Therefore, 

all resources were allocated towards the end of the value stream while mostly disregarding 

quality linkages in earlier production stages and the engineering phase. Causal ambiguity 

and the dynamics of the system further aggravated decision-making and efficient resource 

allocation. However, no tool was available to analyze the conceptual domain in its entirety 

to facilitate knowledge creation and dissemination of tacit knowledge.  

 

Figure 5. Differences between sources of quality issues and resource allocation 

 

This was the first attempt to fully conceptualize the quality domain of the production 

system and the aim was to support decision-making regarding quality improvement and 

measurement efforts within steps of the process chain. Although the experts had 

knowledge, no effort was made to make it available and use it to improve decision making 

with the goal of increasing the firm’s performance in terms of reduced quality costs. 

Knowledge was tacit and dispersed, and not easily accessible without the help of an 

applicable method that would allow for the visualization of the conceptual domain and 
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quality linkages over the whole value stream in order to reduce ambiguity. As mentioned 

in the beginning, behavioral QM is needed to facilitate decision making by changing 

attention paid to measured variables, assessing the specific impact of factors on process 

variability and quality, and to enhance leadership and trust to boost tacit knowledge 

creation. This increases the metacognitive understanding of management to adapt to 

changing situations and make innovative decisions based on the information presented by 

the concept map.  

Using the results of the analysis to create action proposals is a key principle of concept 

mapping (Trochim, 1989) and was mentioned by White (2016) to increase the relevance 

of OM interventions. Using the concept map as a starting point for causal loop diagrams 

generates a large quantity of integrated information for decision makers. This aid that 

enables the detection of causal relationships, as described by the experts of the business 

unit, can facilitate an improvement process because the conceptual domain is analyzed 

by the problem owners in their native language. It provides a basis for discussion and 

decision-making based on tacit knowledge of the team of experts. It also increases 

workforce motivation by improving factors that are considered critical by workers on the 

shop floor and in engineering departments. 

 Consequently, this kind of analysis has a very high internal validity. Many small-

volume batch production systems with high quality requirements (like premium sports 

car manufacturers) are facing similar problems with causal ambiguity and dynamics. 

Campbell (1986) suggested a different name for external validity or generalizability: the 

proximal similarity model. Within the proximal similarity model, researchers can think 

of contexts that are more or less similar to the one in the study. A gradient of similarity 

for times, people, settings, and contexts can be developed from the most closely similar 

to least similar and findings can be transferred to those people, settings, socio-political 

contexts, and times that are most like those (i.e., most proximally similar to) in the focal 
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study. We believe that our findings can easily be generalized to many of these settings; 

thus, our analysis and the proposed methodology offer some degree of external validity 

as well. 

The method offers a more holistic approach to learn about the conceptual domain of 

quality issues, compared to, for example, only a causal loop diagram, or a fishbone 

diagram. Fishbone diagrams are aimed at a specific problem based on an analysis of 

predetermined categories (e.g., machine, material, method, etc.). The clusters generated 

by this study are relatively similar to those generic categories, however, concept maps 

could potentially offer more tailored solutions, specific to certain production systems, and 

facilitate more innovative and creative problem solving. Asif (2019) mentions the benefits 

of fishbone diagrams, among other tools, to generate basic solutions, but acknowledges 

the much greater potential to provide deeper understanding if individuals, or teams, 

provide better inputs and analyses based on improved behavioral practices. Also, causal 

loop diagrams can benefit from the results of concept mapping as a starting point to create 

the CLD. As mentioned in section 2: “One of the most difficult and important steps in 

planning is the initial conceptualization”.  Zeng et al. (2017) also found a positive 

influence of soft QM on hard QM to improve quality information and process 

management within an organization. In the future, we hope to use a combination of hard- 

and soft methods to integrate more tools into the decision-making process; for example, 

by substituting the original categories of a fishbone diagram with clusters from the 

concept maps to create more tailored tools to solve specific problems for various 

production systems (concept maps define the domain in which specific problems should 

be solved). By adding more sources of information from members of the production 

system we hope to increase the applicability of such methods and their focus and accuracy 

to solve specific problems. 
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